21 research outputs found
What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit.
The GRIA1 locus, encoding the GluA1 (also known as GluRA or GluR1) AMPA glutamate receptor subunit, shows genome-wide association to schizophrenia. As well as extending the evidence that glutamatergic abnormalities have a key role in the disorder, this finding draws attention to the behavioural phenotype of Gria1 knockout mice. These mice show deficits in short-term habituation. Importantly, under some conditions the attention being paid to a recently presented neutral stimulus can actually increase rather than decrease (sensitization). We propose that this mouse phenotype represents a cause of aberrant salience and, in turn, that aberrant salience (and the resulting positive symptoms) in schizophrenia may arise, at least in part, from a glutamatergic genetic predisposition and a deficit in short-term habituation. This proposal links an established risk gene with a psychological process central to psychosis and is supported by findings of comparable deficits in short-term habituation in mice lacking the NMDAR receptor subunit Grin2a (which also shows association to schizophrenia). As aberrant salience is primarily a dopaminergic phenomenon, the model supports the view that the dopaminergic abnormalities can be downstream of a glutamatergic aetiology. Finally, we suggest that, as illustrated here, the real value of genetically modified mice is not as ‘models of schizophrenia’ but as experimental tools that can link genomic discoveries with psychological processes and help elucidate the underlying neural mechanisms
A comparison between the effects of medial septal lesions and entorhinal cortex lesions on performance of nonspatial working memory tasks and reversal learning
Rats with either electrolytic medial septal lesions or cytotoxic entorhinal lesions were compared to unoperated controls on a series of delayed matching-to-sample (DMS) tasks. A DMS trial consisted of two runs. In the first (information) run, the subject was familiarized with a sample discriminandum. In the second (choice) run, the subject was required to discriminate the sample discriminandum from a novel one. When a set of 20 discrete complex objects were used as discriminanda and each discriminandum was used once per day, neither lesions impaired choice accuracy. However, when a single pair of simple discriminanda was employed and re-used between trials within a day, rats with medial septal lesions were severely impaired whereas rats with entorhinal lesions performed at a level comparable to unoperated controls. Next, proactive interference was demonstrated by the introduction of an extra run prior to the information run. When this extra (pre-information) run required the subjects to visit the (eventual) negative discriminandum such that correct choice had to be guided by relative familiarity judgement, choice performance was reduced. Neither lesion group was selectively affected by this manipulation. But when the relative reinforcement history of the pre-information run and the information run was manipulated, such that a correct response required the subject to approach a discriminandum that had recently been non-rewarded, rats with entorhinal lesions were selectively impaired. The effect of delay was demonstrated when a 20-s interval was imposed between information run and choice run. This reduced overall choice accuracy, and this effect appeared to be more pronounced in both lesion groups, although not significantly so. Finally, neither lesion affected the acquisition of a simple discrimination task, but reversal learning was selectively enhanced in the entorhinal lesion group
Mammillary body lesions and restricted subicular output lesions produce long-lasting DRL performance impairments in rats
Potentiation of amphetamine-induced locomotor activity following NMDA-induced retrohippocampal neuronal loss in the rat
Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity
Early behavioural changes in scrapie-affected mice and the influence of dapsone
Behavioural testing can reveal effects in scrapie-infected mice long before overt clinical signs appear (Betmouni et al., 1999, Psychobiology, 27, 63–71). These effects may be partly attributable to an early, atypical inflammatory response in the brain (Betmouni et al., 1996, Neuroscience, 74, 1–5). The present study replicated and extended these findings, and examined the effect of chronic treatment with dapsone. This anti-inflammatory compound has been reported to delay disease onset in a rat model of Creutzfeldt–Jakob disease (Manuelidis et al., 1998, Lancet, 352, 456). Although the doses used in the present study were higher than those of Manuelidis et al. (1998), no attenuation of the disease was seen in either behavioural or subsequent histological tests. Burrowing, i.e. displacing food pellets from a tube in the home cage, decreased from around week 12 in scrapie-infected mice, as did consumption of palatable glucose solution. Concurrently, ambulation in an open field increased, as did rearing at around week 17. Spontaneous alternation was impaired around this time. Around 18 weeks, motor performance on an inverted screen, horizontal bar, rotating rod and static rods decreased. Nest construction was impaired at 20 weeks. Overt clinical signs (reduction in mobility, hunched posture, poor coat condition, bladder enlargement) only occurred after week 20, when the mice were prepared for histology. The ME7 scrapie-infected mice thus showed a characteristic complex of neurological and behavioural changes during the course of the disease that were not ameliorated by dapsone. These changes appeared well before clinical signs were prominent
