1,681 research outputs found

    Near-Infrared Observations of Powerful High-Redshift Radio Galaxies: 4C 40.36 and 4C 39.37

    Get PDF
    We present near-infrared imaging and spectroscopic observations of two FR II high-redshift radio galaxies (HzRGs), 4C 40.36 (z=2.3) and 4C 39.37 (z=3.2), obtained with the Hubble, Keck, and Hale Telescopes. High resolution images were taken with filters both in and out of strong emission lines, and together with the spectroscopic data, the properties of the line and continuum emissions were carefully analyzed. Our analysis of 4C 40.36 and 4C 39.37 shows that strong emission lines (e.g., [O III] 5007 A and H alpha+[N II]) contribute to the broad-band fluxes much more significantly than previously estimated (80% vs. 20-40%), and that when the continuum sources are imaged through line-free filters, they show an extremely compact morphology with a high surface brightness. If we use the R^1/4-law parametrization, their effective radii (r(e)) are only 2-3 kpc while their restframe B-band surface brightnesses at r(e) are I(B) ~ 18 mag/arcsec^2. Compared with z ~ 1 3CR radio galaxies, the former is x3-5 smaller, while the latter is 1-1.5 mag brighter than what is predicted from the I(B)-r(e) correlation. Although exponential profiles produce equally good fits for 4C 40.36 and 4C 39.37, this clearly indicates that with respect to the z~1 3CR radio galaxies, the light distribution of these two HzRGs is much more centrally concentrated. Spectroscopically, 4C 40.36 shows a flat (fnu=const) continuum while 4C 39.37 shows a spectrum as red as that of a local giant elliptical galaxy. Although this difference may be explained in terms of a varying degree of star formation, the similarities of their surface brightness profiles and the submillimeter detection of 4C 39.37 might suggest that the intrinsic spectra is equally blue (young stars or an AGN), and that the difference is the amount of reddening.Comment: 30 pages, 6 tables, 10 figures; Accepted for publication in Astronomical Journa

    Molecules, ices and astronomy

    Get PDF
    Molecules in interstellar gas and in interstellar ices play a fundamental role in astronomy. However, the formation of the simplest molecule, molecular hydrogen, is still not fully understood. Similarly, although interstellar ice analogues have received much attention in the laboratory, the evolution of ices in the interstellar medium still requires further study. At UCL we have developed two separate experiments to address these issues and explore the following questions: How is H formed on dust-grain surfaces? What is the budget between internal, kinetic and surface energies in the formation process? What are the astronomical consequences of these results? For ices, we ask: How do molecules desorb from pure and from mixed ices in regions warmed by newly formed stars? What can molecules released from ices tell us about the star-formation process? We put our results in the context of other laboratory work and we describe their application to current problems in astronomy

    Expanding e-MERLIN with the Goonhilly Earth Station

    Full text link
    A consortium of universities has recently been formed with the goal of using the decommissioned telecommunications infrastructure at the Goonhilly Earth Station in Cornwall, UK, for astronomical purposes. One particular goal is the introduction of one or more of the ~30-metre parabolic antennas into the existing e-MERLIN radio interferometer. This article introduces this scheme and presents some simulations which quantify the improvements that would be brought to the e-MERLIN system. These include an approximate doubling of the spatial resolution of the array, an increase in its N-S extent with strong implications for imaging the most well-studied equatorial fields, accessible to ESO facilities including ALMA. It also increases the overlap between the e-MERLIN array and the European VLBI Network. We also discuss briefly some niche science areas in which an e-MERLIN array which included a receptor at Goonhilly would be potentially world-leading, in addition to enhancing the existing potential of e-MERLIN in its role as a Square Kilometer Array pathfinder instrument.Comment: 7 pages, 3 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou

    Molecular Clouds as Ensembles of Transient Cores

    Get PDF
    We construct models of molecular clouds that are considered as ensembles of transient cores. Each core is assumed to develop in the background gas of the cloud, grow to high density and decay into the background. The chemistry in each core responds to the dynamical state of the gas and to the gas-dust interaction. Ices are deposited on the dust grains in the core's dense phase, and this material is returned to the gas as the core expands to low density. The cores of the ensemble number typically one thousand and are placed randomly in position within the cloud, and are assigned a random evolutionary phase. The models are used to generate molecular line contour maps of a typical dark cloud. These maps are found to represent extremely well the characteristic features of observed maps of the dark cloud L673, which has been observed at both low and high resolutions. The computed maps are found to exhibit the general morphology of the observed maps, and to generate similar sizes of emitting regions, molecular column densities, and the separations between peaks of emissions of various molecular species. The models give insight into the nature of molecular clouds and the dynamical processes occurring within them, and significantly constrain dynamical and chemical processes in the interstellar medium.Comment: 29 pages, 8 figures. Accepted for publication in Ap

    Goonhilly: a new site for e-MERLIN and the EVN

    Full text link
    The benefits for the e-MERLIN and EVN arrays of using antennae at the satellite communication station at Goonhilly in Cornwall are discussed. The location of this site - new to astronomy - will provide an almost equal distribution of long baselines in the east-west- and north-south directions, and opens up the possibility to get significantly improved observations of equatorial fields with e-MERLIN. These additional baselines will improve the sensitivity on a set of critical spatial scales and will increase the angular resolution of e-MERLIN by a factor of two. e-MERLIN observations, including many allocated under the e-MERLIN Legacy programme, will benefit from the enhanced angular resolution and imaging capability especially for sources close to or below the celestial equator (where ESO facilities such as ALMA will operate) of including the Goonhilly telescopes. Furthermore, the baselines formed between Goonhilly and the existing stations will close the gap between the baselines of e-MERLIN and those of the European VLBI Network (EVN) and therefore enhance the legacy value of e-MERLIN datasets.Comment: 10 pages, 2 figue

    Lunar lander conceptual design

    Get PDF
    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers

    Helical Strands in the Jet-like Narrow Line Region of ESO 428-G14

    Get PDF
    We present HST/WFPC2 images of the narrow line region (NLR) of the Seyfert 2 galaxy ESO 428-G14 (0714-2914, M4-1). The NLR consists of many individual, thin strands, which are very closely related to the radio jet and produce a highly complex yet ordered structure. We find that the jet is two-sided with a double-helix of emission-line gas apparently wrapped around the NW side. To the SE, the jet seems to be deflected at a ridge of highly excited gas. The strands to the SE may also wrap around the radio jet, but here complete helices are not seen. The overall structure is reminiscent of the jet seen in NGC 4258. Faint symmetric features aligned with the nucleus could indicate the presence of a highly collimated beam of photons or plasma from the center.Comment: ApJ Letters, accepted for publication, 10 pages, 2 PS Figures, AASTeX, also available at http://www.astro.umd.edu/~hfalcke/publications.html#eso42

    Molecular abundance ratios as a tracer of accelerated collapse in regions of high mass star formation?

    Get PDF
    Recent observations suggest that the behaviour of tracer species such as N_2H+ and CS is significantly different in regions of high and low mass star formation. In the latter, N_2H+ is a good tracer of mass, while CS is not. Observations show the reverse to be true in high-mass star formation regions. We use a computational chemical model to show that the abundances of these and other species may be significantly altered by a period of accelerated collapse in high mass star forming regions. We suggest these results provide a potential explanation of the observations, and make predictions for the behaviour of other species.Comment: 5 pages, 3 figures To be published in the Astrophysical Journa

    HgCdTe Avalanche Photodiode Array Detectors with Single Photon Sensitivity and Integrated Detector Cooler Assemblies for Space Lidar Applications

    Get PDF
    A HgCdTe avalanche photodiode (APD) focal plane array assembly with linear mode photon-counting capability has been developed for space lidar applications. An integrated detector cooler assembly (IDCA) has been built using a miniature Stirling cooler. A microlens array has been included to improve the fill factor. The HgCdTe APD has a spectral response from 0.9- to 4.3-m wavelengths, a photon detection efficiency as high as 70%, and a dark count rate of <250 kHz at 110 K. The mass of the IDCA is 0.8 kg and the total electrical power consumption is about 7 W. The HgCdTe APD arrays have been characterized at NASA Goddard Space Flight Center. A series of environmental tests have been conducted for the IDCAs, including vibration, thermal cycling, and thermal vacuum tests. A description of the device and the test results at NASA are given in this paper

    Global Standards in Action: Insights from Anti-Money Laundering Regulation

    Get PDF
    As organizations have come under the increasing influence of global rules of all sorts, organization scholars have started studying the dynamics of global regulation. The purpose of this article is to identify and evaluate the contribution to this interdisciplinary field by the ‘Stockholm Centre for Organisational Research’. The latter’s key proposition is that while global regulation often consists of voluntary best practice rules it can nevertheless become highly influential under certain conditions. We assess how innovative this approach is using as a benchmark the state of the art in another field of relevance to the study of global regulation, i.e. ‘International Relations’. Our discussion is primarily theoretical but we draw on the case of global anti-money laundering regulation to illustrate our arguments and for inspirations of how to further elaborate the approach
    • 

    corecore