130 research outputs found
Inclusion of virtual nuclear excitations in the formulation of the (e,e'N)
A wave-function framework for the theory of the (e,e'N) reaction is presented
in order to justify the use of coupled channel equations in the usual Feynman
matrix element. The overall wave function containing the electron and nucleon
coordinates is expanded in a basis set of eigenstates of the nuclear
Hamiltonian, which contain both bound states as well as continuum states.. The
latter have an ingoing nucleon with a variable momentum Q incident on the
daughter nucleus as a target, with as many outgoing channels as desirable. The
Dirac Eqs. for the electron part of the wave function acquire inhomogeneous
terms, and require the use of distorted electron Green's functions for their
solutions. The condition that the asymptotic wave function contain only the
appropriate momentum Q_k for the outgoing nucleon, which corresponds to the
electron momentum k through energy conservation, is achieved through the use of
the steepest descent saddle point method, commonly used in three-body
calculations.Comment: 30 page
Coulomb and nuclear breakup of B
The cross sections for the (B,Be-) breakup reaction on Ni
and Pb targets at the beam energies of 25.8 MeV and 415 MeV have been
calculated within a one-step prior-form distorted-wave Born approximation. The
relative contributions of Coulomb and nuclear breakup of dipole and quadrupole
multipolarities as well as their interference have been determined. The nuclear
breakup contributions are found to be substantial in the angular distributions
of the Be fragment for angles in the range of 30 - 80 at
25.8 MeV beam energy. The Coulomb-nuclear interference terms make the dipole
cross section larger than that of quadrupole even at this low beam energy.
However, at the incident energy of 415 MeV, these effects are almost negligible
in the angular distributions of the (Be-p) coincidence cross sections at
angles below 4.Comment: Revised version, accepted for publication in Phys. Rev.
Investigation of the Coupling Potential by means of S-matrix Inversion
We investigate the inelastic coupling interaction by studying its effect on
the elastic scattering potential as determined by inverting the elastic
scattering -matrix. We first address the effect upon the real and imaginary
elastic potentials of including excited states of the target nucleus. We then
investigate the effect of a recently introduced novel coupling potential which
has been remarkably successful in reproducing the experimental data for the
C+C, C+Mg and O+Si reactions over a
wide range of energies. This coupling potential has the effect of deepening the
real elastic potential in the surface region, thereby explaining a common
feature of many phenomenological potentials. It is suggested that one can
relate this deepening to the super-deformed state of the compound nucleus,
Mg.Comment: 12 pages with 3 figure
The pion-three-nucleon problem with two-cluster connected-kernel equations
It is found that the coupled piNNN-NNN system breaks into fragments in a
nontrivial way. Assuming the particles as distinguishable, there are indeed
four modes of fragmentation into two clusters, while in the standard three-body
problem there are three possible two-cluster partitions and conversely the
four-body problem has seven different possibilities. It is shown how to
formulate the pion-three-nucleon collision problem through the
integral-equation approach by taking into account the proper fragmentation of
the system. The final result does not depend on the assumption of separability
of the two-body t-matrices. Then, the quasiparticle method a' la
Grassberger-Sandhas is applied and effective two-cluster connected-kernel
equations are obtained. The corresponding bound-state problem is also
formulated, and the resulting homogeneous equation provides a new approach
which generalizes the commonly used techniques to describe the three-nucleon
bound-state problem, where the meson degrees of freedom are usually suppressed.Comment: 20 pages, REVTeX, with 3 COLOR figures (PostScript
Low temperature scattering with the R-matrix method: the Morse potential
Experiments are starting to probe collisions and chemical reactions between
atoms and molecules at ultra-low temperatures. We have developed a new
theoretical procedure for studying these collisions using the R-matrix method.
Here this method is tested for the atom -- atom collisions described by a Morse
potential. Analytic solutions for continuum states of the Morse potential are
derived and compared with numerical results computed using an R-matrix method
where the inner region wavefunctions are obtained using a standard nuclear
motion algorithm. Results are given for eigenphases and scattering lengths.
Excellent agreement is obtained in all cases. Progress in developing a general
procedure for treating ultra-low energy reactive and non-reactive collisions is
discussed.Comment: 18 pages, 6 figures, 3 tables, conferenc
Quaiselastic scattering from relativistic bound nucleons: Transverse-Longitudinal response
Predictions for electron induced proton knockout from the and
shells in O are presented using various approximations for the
relativistic nucleonic current. Results for the differential cross section,
transverse-longitudinal response () and left-right asymmetry
are compared at (GeV/c) corresponding to TJNAF experiment
89-003. We show that there are important dynamical and kinematical relativistic
effects which can be tested by experiment.Comment: 10 pages, including 2 figures. Removed preliminary experimental data
from the figure
Improved +He potentials by inversion, the tensor force and validity of the double folding model
Improved potential solutions are presented for the inverse scattering problem
for +He data. The input for the inversions includes both the data of
recent phase shift analyses and phase shifts from RGM coupled-channel
calculations based on the NN Minnesota force. The combined calculations provide
a more reliable estimate of the odd-even splitting of the potentials than
previously found, suggesting a rather moderate role for this splitting in
deuteron-nucleus scattering generally. The approximate parity-independence of
the deuteron optical potentials is shown to arise from the nontrivial
interference between antisymmetrization and channel coupling to the deuteron
breakup channels. A further comparison of the empirical potentials established
here and the double folding potential derived from the M3Y effective NN force
(with the appropriate normalisation factor) reveals strong similarities. This
result supports the application of the double folding model, combined with a
small Majorana component, to the description even of such a loosely bound
projectile as the deuteron. In turn, support is given for the application of
iterative-perturbative inversion in combination with the double folding model
to study fine details of the nucleus-nucleus potential. A -He tensor
potential is also derived to reproduce correctly the negative Li quadrupole
moment and the D-state asymptotic constant.Comment: 22 pages, 12 figures, in Revte
New Discrete Basis for Nuclear Structure Studies
A complete discrete set of spherical single-particle wave functions for
studies of weakly-bound many-body systems is proposed. The new basis is
obtained by means of a local-scale point transformation of the spherical
harmonic oscillator wave functions. Unlike the harmonic oscillator states, the
new wave functions decay exponentially at large distances. Using the new basis,
characteristics of weakly-bound orbitals are analyzed and the ground state
properties of some spherical doubly-magic nuclei are studied. The basis of the
transformed harmonic oscillator is a significant improvement over the harmonic
oscillator basis, especially in studies of exotic nuclei where the coupling to
the particle continuum is important.Comment: 13 pages, RevTex, 6 p.s. figures, submitted to Phys. Rev.
- …