412 research outputs found

    Selected Poems

    Get PDF

    Quality standards and samples in genetic testing

    Get PDF
    The most critical performance indicator for medical laboratories is the delivery of accurate test results. In any laboratory, there is always the possibility that random or systematic errors may occur and place human health and welfare at risk. Laboratory quality assurance programmes continue to drive improvements in analytical accuracy. The most rigorously scrutinised data on laboratory errors, which come from transfusion medicine, reveal that the incidence of analytical errors has fallen to levels where most of the residual risk is now found in preanalytical links in the chain from patient to result, particularly activities associated with ordering of tests and sample collection. This insight is important for genetic testing because, like pretransfusion testing of patients with unknown blood groups, a substantial proportion of genotyping results cannot be immediately verified. An increasing number of clinical decisions, associated personal and social choices, and legal outcomes are now influenced by genetic test results in the absence of other confirmatory data. An incorrect test result may lead to unnecessary and irreversible interventions, which may in themselves have associated risks for the patient, inaccurate risk assessment regarding the disease, missed opportunities for disease prevention or even wrongful conviction in a court of law. Unfortunately, there is limited information available about the risk of preanalytical errors associated with, and few published guidelines regarding, sample collection for genetic testing. The growing number and range of important decisions made on the basis of genetic findings warrant a reappraisal of current standards to minimise risks in genetic testing

    The Mars observer camera

    Get PDF
    A camera designed to operate under the extreme constraints of the Mars Observer Mission was selected by NASA in April, 1986. Contingent upon final confirmation in mid-November, the Mars Observer Camera (MOC) will begin acquiring images of the surface and atmosphere of Mars in September-October 1991. The MOC incorporates both a wide angle system for low resolution global monitoring and intermediate resolution regional targeting, and a narrow angle system for high resolution selective surveys. Camera electronics provide control of image clocking and on-board, internal editing and buffering to match whatever spacecraft data system capabilities are allocated to the experiment. The objectives of the MOC experiment follow

    Report of the Kimberley Pipeline Environmental Advisory Committee to the Hon. Ernie Bridge, JP, MLA, Minister for Agriculture, Water Resources and the North West

    Get PDF
    The Committee was established by the Minister for Water Resources, Hon Ernie Bridge, MLA, to advise him on the potential environmental and social impacts of the proposed Kimberley Water Supply Scheme. This report contains the results of the Committee's discussions and investigations

    Familial phenotype differences in PKD1111See Editorial, p. 344.

    Get PDF
    Familial phenotype differences in PKD1.BackgroundMutations within the PKD1 gene are responsible for the most common and most severe form of autosomal dominant polycystic kidney disease (ADPKD). Although it is known that there is a wide range of disease severity within PKD1 families, it is uncertain whether differences in clinical severity also occur among PKD1 families.MethodsTen large South Wales ADPKD families with at least 12 affected members were included in the study. From affected members, clinical information was obtained, including survival data and the presence of ADPKD-associated complications. Family members who were at risk of having inherited ADPKD but were proven to be non-affected were included as controls. Linkage and haplotype analysis were performed with highly polymorphic microsatellite markers closely linked to the PKD1 gene. Survival data were analyzed by the Kaplan–Meier method and the log rank test. Logistic regression analysis was used to test for differences in complication rates between families.ResultsHaplotype analysis revealed that each family had PKD1-linked disease with a unique disease-associated haplotype. Interfamily differences were observed in overall survival (P = 0.0004), renal survival (P = 0.0001), hypertension prevalence (P = 0.013), and hernia (P = 0.048). Individuals with hypertension had significantly worse overall (P = 0.0085) and renal (P = 0.03) survival compared with those without hypertension. No statistically significant differences in the prevalence of hypertension and hernia were observed among controls.ConclusionWe conclude that phenotype differences exist between PKD1 families, which, on the basis of having unique disease-associated haplotypes, are likely to be associated with a heterogeneous range of underlying PKD1 mutations

    Mars Observer Camera

    Get PDF
    The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the “push broom” technique; that is, they do not take “frames” but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km × 2.8 km to 2.8 km × 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 × 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes. The MOC wide-angle cameras are capable of viewing Mars from horizon to horizon and are designed for low-resolution global and intermediate resolution regional studies. Low-resolution observations can be made every orbit, so that in a single 24-hour period a complete global picture of the planet can be assembled at a resolution of at least 7.5 km/pixel. Regional areas (covering hundreds of kilometers on a side) may be photographed at a resolution of better than 250 m/pixel at the nadir. Such images will be particularly useful in studying time-variable features such as lee clouds, the polar cap edge, and wind streaks, as well as acquiring stereoscopic coverage of areas of geological interest. The limb can be imaged at a vertical and along-track resolution of better than 1.5 km. Different color filters within the two wide-angle cameras permit color images of the surface and atmosphere to be made to distinguish between clouds and the ground and between clouds of different composition

    Mars Observer Camera

    Get PDF
    The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the “push broom” technique; that is, they do not take “frames” but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km × 2.8 km to 2.8 km × 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 × 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes. The MOC wide-angle cameras are capable of viewing Mars from horizon to horizon and are designed for low-resolution global and intermediate resolution regional studies. Low-resolution observations can be made every orbit, so that in a single 24-hour period a complete global picture of the planet can be assembled at a resolution of at least 7.5 km/pixel. Regional areas (covering hundreds of kilometers on a side) may be photographed at a resolution of better than 250 m/pixel at the nadir. Such images will be particularly useful in studying time-variable features such as lee clouds, the polar cap edge, and wind streaks, as well as acquiring stereoscopic coverage of areas of geological interest. The limb can be imaged at a vertical and along-track resolution of better than 1.5 km. Different color filters within the two wide-angle cameras permit color images of the surface and atmosphere to be made to distinguish between clouds and the ground and between clouds of different composition

    HFE mutations, iron deficiency and overload in 10 500 blood donors

    Get PDF
    People with genetic haemochromatosis (GH) accumulate iron from excessive dietary absorption. In populations of northern European origin, over 90% of patients are homozygous for the C282Y mutation of the HFE gene. While about 1 in 200 people in the general population have this genotype the proportion who develop clinical haemochromatosis is not known. The influence of HFE genotype on iron status was investigated in 10 556 blood donors. The allele frequencies of the C282Y and H63D mutations were
    corecore