2,263 research outputs found

    Effects of extrinsic point defects in phosphorene: B, C, N, O and F Adatoms

    Full text link
    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp3 bonds of phosphorene, and reside at the interstitial sites in the 2D lattice by forming sp2 bonds with the native atoms. On the other hand, N, O and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N and F adatoms will modify the band gap of phosphorene yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunneling behavior is observed. Our results therefore offer a possible route to tailor the electronic and magnetic properties of phosphorene by the adatom functionalization, and provide the physical insights of the environmental sensitivity of phosphorene, which will be helpful to experimentalists in evaluating the performance and aging effects of phosphorene-based electronic devices

    Atomically thin group-V elemental films: theoretical investigations of antimonene allotropes

    Full text link
    Group-V elemental monolayers including phosphorene are emerging as promising 2D materials with semiconducting electronic properties. Here, we present the results of first principles calculations on stability, mechanical and electronic properties of 2D antimony (Sb), antimonene. Our calculations show that free-standing {\alpha} and \b{eta} allotropes of antimonene are stable and semiconducting. The {\alpha}-Sb has a puckered structure with two atomic sub-layers and \b{eta}-Sb has a buckled hexagonal lattice. The calculated Raman spectra and STM images have distinct features thus facilitating characterization of both allotropes. The \b{eta}-Sb has nearly isotropic mechanical properties while {\alpha}-Sb shows strongly anisotropic characteristics. An indirect-direct band gap transition is expected with moderate tensile strains applied to the monolayers, which opens up the possibility of their applications in optoelectronics

    Electronic and quantum transport properties of a graphene-BN dot-ring hetero-nanostructure

    Get PDF
    Quantum dots, quantum rings, and, most recently, quantum dot-ring nanostructures have been studied for their interesting potential applications in nanoelectronic applications. Here, the electronic properties of a dot-ring hetero-nanostructure consisting of a graphene ring and graphene dot with a hexagonal boron nitride (h-BN) ring serving as barrier between ring and dot are investigated using density functional theory. Analysis of the character of the wave functions near the Fermi level and of the charge distribution of this dot-ring structure and calculations of the quantum transport properties ļ¬nd asymmetry in the conductance resonances leading to asymmetric Iā€“V characteristics which can be modiļ¬ed by applying a negative voltage potential to the central graphene dot

    Degradation of Phosphorene in Air: Understanding at Atomic Level

    Full text link
    Phosphorene is a promising two dimensional (2D) material with a direct band gap, high carrier mobility, and anisotropic electronic properties. Phosphorene-based electronic devices, however, are found to degrade upon exposure to air. In this paper, we provide an atomic level understanding of stability of phosphorene in terms of its interaction with O2 and H2O. The results based on density functional theory together with first principles molecular dynamics calculations show that O2 could spontaneously dissociate on phosphorene at room temperature. H2O will not strongly interact with pristine phosphorene, however, an exothermic reaction could occur if phosphorene is first oxidized. The pathway of oxidation first followed by exothermic reaction with water is the most likely route for the chemical degradation of the phosphorene-based devices in air

    Tunnelling Characteristics of Stone-Wales Defects in Monolayers of Sn and Group-V Elements

    Full text link
    Topological defects in ultrathin layers are often formed during synthesis and processing, thereby, strongly influencing their electronic properties . In this paper, we investigate the role of Stone-Wales (SW) defects in modifying the electronic properties of the monolayers of Sn and group-V elements. The calculated results find the electronic properties of stanene (monolayer of Sn atoms) to be strongly dependent on the concentration of SW-defects e.g., defective stanene has nearly zero band gap (~ 0.03 eV) for the defect concentration of 2.2 x 10^13 cm^-2 which opens up to 0.2 eV for the defect concentration of 3.7 x 10^13 cm^-2. In contrast, SW-defects appear to induce conduction states in the semiconducting monolayers of group-V elements. These conduction states act as channels for electron tunnelling, and the calculated tunnelling characteristics show the highest differential conductance for the negative bias with the asymmetric current-voltage characteristics. On the other hand, the highest differential conductance was found for the positive bias in stanene. Simulated STM topographical images of stanene and group-V monolayers show distinctly different features in terms of their cross-sectional views and distance-height profiles which can serve as fingerprints to identify the topological defects in the monolayers of group-IV and group-V elements in experiments.Comment: 18 pages, 5 figures, 1 tabl

    Phosphorene Oxide: Stability and electronic properties of a novel 2D material

    Full text link
    Phosphorene, the monolayer form of the (black) phosphorus, was recently exfoliated from its bulk counterpart. Phosphorene oxide, by analogy to graphene oxide, is expected to have novel chemical and electronic properties, and may provide an alternative route to synthesis of phosphorene. In this letter, we investigate physical and chemical properties of the phosphorene oxide including its formation by the oxygen adsorption on the bare phosphorene. Analysis of the phonon dispersion curves finds stoichiometric and non-stoichiometric oxide configurations to be stable at ambient conditions, thus suggesting that the oxygen absorption may not degrade the phosphorene. The nature of the band gap of the oxides depends on the degree of the functionalization of phosphorene; indirect gap is predicted for the non-stoichiometric configurations whereas a direct gap is predicted for the stoichiometric oxide. Application of the mechanical strain and external electric field leads to tunability of the band gap of the phosphorene oxide. In contrast to the case of the bare phosphorene, dependence of the diode-like asymmetric current-voltage response on the degree of stoichiometry is predicted for the phosphorene oxide

    Theoretical study of electron transport in boron nanotubes

    Get PDF
    The electron transport in single-walled boron nanotube (BNT) is studied using the Landauer-BĆ¼ttiker [R. Landauer, J. Phys.: Condens: Matter 1, 8099 (1989); M. BĆ¼ttiker, Phys. Rev. Lett. 57, 1761 (1986)] multichannel approach in conjunction with the tight-binding method. In the range of the calculated length (1-5.0 nm) of the tubes, the calculations predict a ballistic transport in BNT and find a relatively low resistance for BNTs as compared to that of the single-walled carbon nanotubes (CNTs) of comparable length. A lower resistance in the case of BNT than the CNT may be attributed to electron-deficient nature of boron characterized by the presence of two-center, and multicenter bonds in the former
    • ā€¦
    corecore