35 research outputs found

    Challenges in Vaccine Acceptance– A Framework & Toolkit for the COVID -19 Battle

    Get PDF
    During the first wave of this COVID-19 pandemic, India’s performance was relatively superior among the countries that had their first cases in January 2020. We grouped these countries as ‘January Cohort’ and analysed their relative performance (IJCH, April 2020), supporting India’s management. Fast forward to the present, India’s performance is woefully lacking, accounting for 30% of daily cases and 31% daily deaths with 18% of the world population [Worldometer Coronavirus database, June1,2021). On this same day, 50% of the countries worldwide (110 of 222) reported no deaths and 25% (57) without any daily new cases. Thus, we have faltered with a series of public health missteps despite a good start. The latest and the most remarkable failure of India is the vaccination, despite being the world’s foremost producer. Many of the poor performers initially in the January Cohort, such as UK and USA, focused on ‘vaccinating their way out of the pandemic’ since the roll out of vaccines in December2020. The results are in display starting February 2021- to date, with cases/ deaths on decline in these countries, while India is in a reverse direction. On June 1st, UK reported no COVID-19 deaths and USA had about 31% decline of 14-day moving average

    Orexigenic Hormone Ghrelin Attenuates Local and Remote Organ Injury after Intestinal Ischemia-Reperfusion

    Get PDF
    Gut ischemia/reperfusion (I/R) injury is a serious condition in intensive care patients. Activation of immune cells adjacent to the huge endothelial cell surface area of the intestinal microvasculature produces initially local and then systemic inflammatory responses. Stimulation of the vagus nerve can rapidly attenuate systemic inflammatory responses through inhibiting the activation of macrophages and endothelial cells. Ghrelin, a novel orexigenic hormone, is produced predominately in the gastrointestinal system. Ghrelin receptors are expressed at a high density in the dorsal vagal complex of the brain stem. In this study, we investigated the regulation of the cholinergic anti-inflammatory pathway by the novel gastrointestinal hormone, ghrelin, after gut I/R.Gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery for 90 min in male adult rats. Our results showed that ghrelin levels were significantly reduced after gut I/R and that ghrelin administration inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival after gut I/R. Administration of a specific ghrelin receptor antagonist worsened gut I/R-induced organ injury and mortality. To determine whether ghrelin's beneficial effects after gut I/R require the intact vagus nerve, vagotomy was performed in sham and gut I/R animals immediately prior to the induction of gut ischemia. Our result showed that vagotomy completely eliminated ghrelin's beneficial effect after gut I/R. To further confirm that ghrelin's beneficial effects after gut I/R are mediated through the central nervous system, intracerebroventricular administration of ghrelin was performed at the beginning of reperfusion after 90-min gut ischemia. Our result showed that intracerebroventricular injection of ghrelin also protected the rats from gut I/R injury.These findings suggest that ghrelin attenuates excessive inflammation and reduces organ injury after gut I/R through activation of the cholinergic anti-inflammatory pathway

    Pivotal Role of the α2A-Adrenoceptor in Producing Inflammation and Organ Injury in a Rat Model of Sepsis

    Get PDF
    Background: Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and puncture (CLP)-induced sepsis in rats, which then stimulates TNF-a production in Kupffer cells (KCs) through the activation of the a2-AR. It is important to know which of the three a2-AR subtypes (i.e., a2A, a2B or a2C) is responsible for the upregulation of TNF-a production. The aim of this study was to determine the contribution of a2A-AR in this process. Methodology/Principal Findings: Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of a2A-AR was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a specific a2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal animals. Finally, the impact of a2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and CLP). Gene expression of the a2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-a in cultured KCs, which was specifically inhibited by the a2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased TNF-a gene expression in KCs and plasma TNF-a which was also abrogated by co-administration of BRL-44408. NE also potentiated LPS-induced TNF-a release via the a2A-AR in vitro and in vivo. This potentiation of TNF-a release by NE was mediated through the a2A-AR coupled Gai protein and the activation of the p38 MAP kinase. Treatment of septic animals with BRL-44408 suppressed TNF-a, prevented multiple organ injury and significantly improved survival from 45% to 75%. Conclusions/Significance: Our novel finding is that hyperresponsiveness to a2-AR stimulation observed in sepsis is primarily due to an increase in a2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing the a2A-AR antagonist as a new therapy for sepsis

    Pro-inflammatory cytokines from Kupffer cells downregulate hepatocyte expression of adrenomedullin binding protein-1

    Get PDF
    AbstractPolymicrobial sepsis is characterized by an early, hyperdynamic phase followed by a late hypodynamic phase. Adrenomedullin (AM), a vasodilatory peptide, inhibits this transition from the early phase to the late phase. Adrenomedullin binding protein-1 (AMBP-1) enhances AM-mediated activities. The decrease of AMBP-1 levels in late sepsis reduces the vascular response to AM and produces the hypodynamic phase. Studies have indicated that the administration of LPS downregulates AMBP-1 production in the liver. Since hepatocytes are the primary source of AMBP-1 biosynthesis in the liver, we employed a co-culture strategy using hepatocyte and Kupffer cells to determine whether LPS directly or by increasing pro-inflammatory cytokines from Kupffer cells downregulates AMBP-1 production. Hepatocytes and Kupffer cells isolated from rats were co-cultured and treated with LPS for 24 h. LPS significantly attenuated AMBP-1 protein expression in a dose-dependent manner. Since AMBP-1 is basically a secretory protein, cell supernatants from co-culture cells treated with LPS were examined for AMBP-1 protein levels. LPS treatment caused a dose related decrease in AMBP-1 protein secretion. Similarly, LPS treatment produced a significant decrease in AMBP-1 protein expression in hepatocytes and Kupffer cells cultured using transwell inserts. LPS had no direct effect on AMBP-1 levels in cultured hepatocytes or Kupffer cells alone. To confirm that the observed effects in co-culture were due to the cytokines released from Kupffer cells, hepatocytes were treated with IL-1β or TNF-α for 24 h and AMBP-1 expression was examined. The results indicated that both cytokines significantly inhibited AMBP-1 protein levels. Thus, pro-inflammatory cytokines released from Kupffer cells are responsible for downregulation of AMBP-1

    Ghrelin Attenuates Sepsis-induced Acute Lung Injury and Mortality in Rats

    No full text
    Rationale: Our study has shown that plasma levels of ghrelin, a stomach-derived peptide, are significantly reduced in sepsis, and that ghrelin administration improves organ blood flow via a nuclear factor (NF)-κB–dependent pathway. However, it remains unknown whether ghrelin has any protective effects on severe sepsis–induced acute lung injury (ALI) and, if so, whether inhibition of NF-κB plays any role in it
    corecore