40 research outputs found

    Review of Nanomedicine

    Get PDF
    The field of nanomedicine holds vast potential for the improvement of health care around the world and the coming nanomedical revolution will surely bring innovative solutions to many of the difficulties we currently encounter in the realm of patient treatment. Nanomedicine is a relatively new field for scientific inquiry. It is defined as the use of nanoscale devices or materials to diagnose and cure diseases by actively interacting at the molecular level within a cellular system. In the context of nanotechnology, the “molecular level” refers to structures less than 100 nanometers in diameter. Given the breadth of this definition of nanomedicine, it can be narrowed and made more applicable when only those devices or medicines designed to function on the nanoscale are considere

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.National Institutes of Health Grant R01-DC-00194National Institutes of Health Contract P01-DC-00119National Institutes of Health Fellowship F32-DC00073National Institutes of Health Grant R01-DC00238National Institutes of Health Grant R01-DC00473National Institutes of Health Grant T32-DC00006National Institutes of Health Grant T32-DC00038National Institutes of Health Contract P01-DC00361National Institutes of Health Grant R01-DC00235National Institutes of Health Contract N01-DC2240

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on five research projects.National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant P01-DC-00119Charles S. Draper Laboratory Contract DL-H-496015National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant RO1 DC00235National Institutes of Health Grant P01-DC00361National Institutes of Health Contract N01-DC-6-210

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on nine research projects.National Institutes of Health Grant 5 T32 NS07047National Institutes of Health Grant 5 P01 NS13126National Institutes of Health Grant 8 R01 DC00194National Institutes of Health Grant 5 R01 NS25995National Institutes of Health Grant 8 R01 DC00238National Institutes of Health Grant 5 R01 NS20322National Institutes of Health Grant 5 R01 DC00235National Institutes of Health Grant 5 R01 NS20269National Institutes of Health Grant 1 P01 NS23734Johnson and Johnson FoundationUnisys Corporation Doctoral Fellowshi

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.National Institutes of Health Grant R01-DC-00194-11National Institutes of Health Grant P01-DC00119 Sub-Project 1National Institutes of Health Grant F32-DC00073-2National Institutes of Health Contract P01-DC00119National Institutes of Health Grant R01-DC00238National Institutes of Health Gramt R01-DC00473National Institutes of Health Grant P01-DC00119National Institutes of Health Grant T32-DC00038PNational Institutes of Health Grant P01-DC00361National Institutes of Health Grant 2RO1 DC00235National Institutes of Health Contract NO1-DC2-240

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on seven research projects.National Institutes of Health Grant P01-DC-00119National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant P01-DC00361National Institutes of Health Grant 2RO1 DC00235National Institutes of Health Contract N01-DC2240

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.National Institutes of Health Grant RO1-DC-00194-11National Institutes of Health Grant PO1-DC00119 Sub-Project 1National Institutes of Health Grant F32-DC00073-3National Institutes of Health Contract P01-DC00119National Institutes of Health Grant R01 DC00238National Institutes of Health Grant P01-DC00119National Institutes of Health Grant T32-DC00038National Institutes of Health Contract P01-DC00361National Institutes of Health Grant R01-DC00235National Institutes of Health Contract NO1-DC2240

    Internally coupled ears in living mammals.

    Get PDF
    It is generally held that the right and left middle ears of mammals are acoustically isolated from each other, such that mammals must rely on neural computation to derive sound localisation cues. There are, however, some unusual species in which the middle ear cavities intercommunicate, in which case each ear might be able to act as a pressure-difference receiver. This could improve sound localisation at lower frequencies. The platypus Ornithorhynchus is apparently unique among mammals in that its tympanic cavities are widely open to the pharynx, a morphology resembling that of some non-mammalian tetrapods. The right and left middle ear cavities of certain talpid and golden moles are connected through air passages within the basicranium; one experimental study on Talpa has shown that the middle ears are indeed acoustically coupled by these means. Having a basisphenoid component to the middle ear cavity walls could be an important prerequisite for the development of this form of interaural communication. Little is known about the hearing abilities of platypus, talpid and golden moles, but their audition may well be limited to relatively low frequencies. If so, these mammals could, in principle, benefit from the sound localisation cues available to them through internally coupled ears. Whether or not they actually do remains to be established experimentally.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00422-015-0675-
    corecore