144 research outputs found

    Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    Get PDF
    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by 33 52 ≈. (or 3 compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy

    Efficacy of ivermectin mass-drug administration to control scabies in asylum seekers in the Netherlands:A retrospective cohort study between January 2014 - March 2016

    Get PDF
    Scabies is a skin infestation with the mite Sarcoptes scabiei causing itch and rash and is a major risk factor for bacterial skin infections and severe complications. Here, we evaluated the treatment outcome of 2866 asylum seekers who received (preventive) scabies treatment before and during a scabies intervention programme (SIP) in the main reception centre in the Netherlands between January 2014 and March 2016. A SIP was introduced in the main national reception centre based on frequent observations of scabies and its complications amongst Eritrean and Ethiopian asylum seekers in the Netherlands. On arrival, all asylum seekers from Eritrea or Ethiopia were checked for clinical scabies signs and received ivermectin/permethrin either as prevention or treatment. A retrospective cohort study was conducted to compare the reinfestations and complications of scabies in asylum seekers who entered the Netherlands before and during the intervention and who received ivermectin/permethrin. In total, 2866 asylum seekers received treatment during the study period (January 2014 -March 2016) of which 1359 (47.4%) had clinical signs of scabies. During the programme, most of the asylum seekers with scabies were already diagnosed on arrival as part of the SIP screening (580 (64.7%) of the 897). Asylum seekers with more than one scabies episode reduced from 42.0% (194/462) before the programme to 27.2% (243/897) during the programme (RR = 0.64, 95% CI = 0.55-0.75). Development of scabies complications later in the asylum procedure reduced from 12.3% (57/462) to 4.6% (41/897). A scabies prevention and treatment programme at start of the asylum procedure was feasible and effective in the Netherlands; patients were diagnosed early and risk of reinfestations and complications reduced. To achieve a further decrease of scabies, implementation of the programme in multiple asylum centres may be needed

    Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments

    Get PDF
    This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients. These transients can be the result from unforced response due to the initial condition and other drifts which are a source of error when performing and interpreting Fourier analysis on measurement data. Fourier analysis is particularly relevant in system identification used to build feedback controllers and the analysis of various pulsed experiments such as heat pulse propagation studies. The basic idea behind the methodology is that transients are continuous complex-valued smooth functions in the Fourier domain which can be estimated from the Fourier data. Then, these smooth functions can be approximately subtracted from the data such that only periodic components are retained. The merit of the approach is shown in two experimental examples, i.e., heat pulse propagation (core transport analysis) and radiation front movement due to gas puffing. The examples show that the quality of the data is significantly improved such that it allows new interpretation of the results even for non-ideal measurements.</p

    Development of a real-time algorithm for detection of the divertor detachment radiation front using multi-spectral imaging

    Get PDF
    In this paper we present a novel algorithm to extract the optical plasma boundary and radiation front for detached divertor plasmas. We show that reliable detection of the divertor leg and radiation front is possible using lightweight image processing tools. Using a non-tomographic approach, the detected divertor leg and radiation front can be mapped to the poloidal plane. This approach is fast and accurate enough for real-time control purposes, allowing in particular real-time plasma shape and detachment control, and post-shot detachment physics and dynamics analysis.</p

    Dynamic Wheelchair Seating Positions Impact Cardiovascular Function after Spinal Cord Injury

    Get PDF
    Background Innovative wheelchairs allow individuals to change position easily for comfort and social situations. While these wheelchairs are beneficial in multiple ways, the effects of position changes on blood pressure might exacerbate hypotension and cerebral hypoperfusion, particularly in those with spinal cord injury (SCI) who can have injury to autonomic nerves that regulate cardiovascular control. Conversely, cardiovascular benefits may be obtained with lowered seating. Here we investigate the effect of moderate changes in wheelchair position on orthostatic cardiovascular and cerebrovascular reflex control. Methods Nineteen individuals with SCI and ten neurologically-intact controls were tested in supine and seated positions (neutral, lowered, and elevated) in the Elevationℱ wheelchair. Participants with SCI were stratified into two groups by the severity of injury to cardiovascular autonomic pathways. Beat-to-beat blood pressure, heart rate and middle cerebral artery blood flow velocity (MCAv) were recorded non-invasively. Results Supine blood pressure and MCAv were reduced in individuals with lesions to autonomic pathways, and declined further with standard seating compared to those with preserved autonomic control. Movement to the elevated position triggered pronounced blood pressure and MCAv falls in those with autonomic lesions, with minimum values significantly reduced compared to the seated and lowered positions. The cumulative duration spent below supine blood pressure was greatest in this group. Lowered seating bolstered blood pressure in those with lesions to autonomic pathways. Conclusions Integrity of the autonomic nervous system is an important variable that affects cardiovascular responses to orthostatic stress and should be considered when individuals with SCI or autonomic dysfunction are selecting wheelchairs

    Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments

    Get PDF
    This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients in perturbative experiments. These transients can be the result from the unforced response due to the initial condition and other slow trends in the measurement data and are a source of error when performing and interpreting Fourier spectra. Fourier analysis is particularly relevant in system identification used to build feedback controllers and the analysis of various pulsed experiments such as heat pulse propagation studies. The basic idea behind the methodology is that transients are continuous complex-valued smooth functions in the Fourier domain which can be estimated from the Fourier data. Then, these smooth functions can be subtracted from the data such that only periodic components are retained. The merit of the approach is shown in two experimental examples, i.e. heat pulse propagation (core transport analysis) and radiation front movement due to gas puffing in the divertor. The examples show that the quality of the data is significantly improved such that it allows for new interpretation of the results even for non-ideal measurements
    • 

    corecore