3 research outputs found

    Endothelial cyclooxygenase-1 paradoxically drives local vasoconstriction and atherogenesis despite underpinning prostacyclin generation

    Get PDF
    Endothelial cyclooxygenase-1–derived prostanoids, including prostacyclin, have clear cardioprotective roles associated with their anti-thrombotic potential but have also been suggested to have paradoxical pathological activities within arteries. To date it has not been possible to test the importance of this because no models have been available that separate vascular cyclooxygenase-1 products from those generated elsewhere. Here, we have used unique endothelial-specific cyclooxygenase-1 knockout mice to show that endothelial cyclooxygenase-1 produces both protective and pathological products. Functionally, however, the overall effect of these was to drive pathological responses in the context of both vasoconstriction in vitro and the development of atherosclerosis and vascular inflammation in vivo. These data provide the first demonstration of a pathological role for the vascular cyclooxygenase-1 pathway, highlighting its potential as a therapeutic target. They also emphasize that, across biology, the role of prostanoids is not always predictable due to unique balances of context, products, and receptors

    Comprehensive phenotypic characterization of late gadolinium enhancement predicts sudden cardiac death in coronary artery disease

    Get PDF
    Background Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) offers the potential to noninvasively characterize the phenotypic substrate for sudden cardiac death (SCD). Objectives The authors assessed the utility of infarct characterization by CMR, including scar microstructure analysis, to predict SCD in patients with coronary artery disease (CAD). Methods Patients with stable CAD were prospectively recruited into a CMR registry. LGE quantification of core infarction and the peri-infarct zone (PIZ) was performed alongside computational image analysis to extract morphologic and texture scar microstructure features. The primary outcome was SCD or aborted SCD. Results Of 437 patients (mean age: 64 years; mean left ventricular ejection fraction [LVEF]: 47%) followed for a median of 6.3 years, 49 patients (11.2%) experienced the primary outcome. On multivariable analysis, PIZ mass and core infarct mass were independently associated with the primary outcome (per gram: HR: 1.07 [95% CI: 1.02-1.12]; P = 0.002 and HR: 1.03 [95% CI: 1.01-1.05]; P = 0.01, respectively), and the addition of both parameters improved discrimination of the model (Harrell’s C-statistic: 0.64-0.79). PIZ mass, however, did not provide incremental prognostic value over core infarct mass based on Harrell’s C-statistic or risk reclassification analysis. Severely reduced LVEF did not predict the primary endpoint after adjustment for scar mass. On scar microstructure analysis, the number of LGE islands in addition to scar transmurality, radiality, interface area, and entropy were all associated with the primary outcome after adjustment for severely reduced LVEF and New York Heart Association functional class of >1. No scar microstructure feature remained associated with the primary endpoint when PIZ mass and core infarct mass were added to the regression models. Conclusions Comprehensive LGE characterization independently predicted SCD risk beyond conventional predictors used in implantable cardioverter-defibrillator (ICD) insertion guidelines. These results signify the potential for a more personalized approach to determining ICD candidacy in CAD

    Comprehensive Phenotypic Characterization of Late Gadolinium Enhancement Predicts Sudden Cardiac Death in Coronary Artery Disease

    Get PDF
    Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) offers the potential to noninvasively characterize the phenotypic substrate for sudden cardiac death (SCD). The authors assessed the utility of infarct characterization by CMR, including scar microstructure analysis, to predict SCD in patients with coronary artery disease (CAD). Patients with stable CAD were prospectively recruited into a CMR registry. LGE quantification of core infarction and the peri-infarct zone (PIZ) was performed alongside computational image analysis to extract morphologic and texture scar microstructure features. The primary outcome was SCD or aborted SCD. Of 437 patients (mean age: 64 years; mean left ventricular ejection fraction [LVEF]: 47%) followed for a median of 6.3 years, 49 patients (11.2%) experienced the primary outcome. On multivariable analysis, PIZ mass and core infarct mass were independently associated with the primary outcome (per gram: HR: 1.07 [95% CI: 1.02-1.12]; P = 0.002 and HR: 1.03 [95% CI: 1.01-1.05]; P = 0.01, respectively), and the addition of both parameters improved discrimination of the model (Harrell's C-statistic: 0.64-0.79). PIZ mass, however, did not provide incremental prognostic value over core infarct mass based on Harrell's C-statistic or risk reclassification analysis. Severely reduced LVEF did not predict the primary endpoint after adjustment for scar mass. On scar microstructure analysis, the number of LGE islands in addition to scar transmurality, radiality, interface area, and entropy were all associated with the primary outcome after adjustment for severely reduced LVEF and New York Heart Association functional class of >1. No scar microstructure feature remained associated with the primary endpoint when PIZ mass and core infarct mass were added to the regression models. Comprehensive LGE characterization independently predicted SCD risk beyond conventional predictors used in implantable cardioverter-defibrillator (ICD) insertion guidelines. These results signify the potential for a more personalized approach to determining ICD candidacy in CAD. [Abstract copyright: Copyright © 2022 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
    corecore