60 research outputs found
i-SNAREs: inhibitory SNAREs that fine-tune the specificity of membrane fusion
A new functional class of SNAREs, designated inhibitory SNAREs (i-SNAREs), is described here. An i-SNARE inhibits fusion by substituting for or binding to a subunit of a fusogenic SNAREpin to form a nonfusogenic complex. Golgi-localized SNAREs were tested for i-SNARE activity by adding them as a fifth SNARE together with four other SNAREs that mediate Golgi fusion reactions. A striking pattern emerges in which certain subunits of the cis-Golgi SNAREpin function as i-SNAREs that inhibit fusion mediated by the trans-Golgi SNAREpin, and vice versa. Although the opposing distributions of the cis- and trans-Golgi SNAREs themselves could provide for a countercurrent fusion pattern in the Golgi stack, the gradients involved would be strongly sharpened by the complementary countercurrent distributions of the i-SNAREs
Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study
Besides its role in controlling the morphology of mitochondria, mitofusin-2 has been proposed to tether mitochondria to the endoplasmic reticulum (ER), based largely on light microscopic analysis. In this study we have examined by electron microscopy the organization of ER and mitochondria in cells expressing or not mitofusin-2. Contrary to previous studies, we observed that loss of mitofusin-2 increased ER-mitochondria juxtaposition. These results suggest that mitofusin-2 does not play a critical role in the juxtapostion of ER and mitochondria, and highlight the essential role of ultrastructural analysis to visualize and measure contact between two intracellular compartments
Insulin release due to stimulation of glycolysis in islets deprived of extracellular glucose
SCOPUS: NotDefined.jinfo:eu-repo/semantics/publishedComm. 12th Annual Meeting European Association for the Study of Diabetes - Helsinki, 2.9.1976
- …