13 research outputs found

    Innate Signaling Pathways in the Maintenance of Serological Memory: A Dissertation

    Get PDF
    Long-term antiviral antibody responses provide protection from re-infection and recurrence of persistent viruses. Using a polyomavirus (PyV) mouse model, our lab has shown that MyD88-deficient mice generate low levels of virus-specific IgG after the acute phase of infection and that these IgG responses have a skewed isotype distribution with low levels of IgG2a/c. Moreover MyD88-deficient mice have reduced numbers of long-lived plasma cells in the bone marrow. These studies suggest an important role of MyD88-mediated signaling in long-term antiviral responses. Our lab has shown that T cell-deficient mice can also maintain long-term virus-specific IgG responses following PyV infection. The goal of this thesis is to evaluate the role of innate signaling pathways in maintaining serological memory to persistent virus infection and to elaborate on how long-term antiviral responses can be maintained in an immunocompetent or partially immune compromised, T cell-deficient host. Regarding T cell-dependent B cell responses, I set out to investigate the upstream and downstream components of the MyD88-mediated pathways required for normal antibody isotype and long-term humoral responses. IgG2a is a predominant immunoglobulin isotype in most virus infections. Wild type mice, in response to PyV infection, primarily induce antiviral IgG2a with some IgG1. MyD88-deficient mice in response to PyV infection display attenuated levels of virus-specific IgG2a, but normal levels of IgG1. Using Unc93B1 mutant mice (3d mice), which are defective in TLRs 3, 7 and 9 signaling, I show that 3d mice also generated low levels of virus-specific IgG2a following PyV infection. Studies in individual TLR3-/-, TLR7-/- or TLR9-/- mice displayed PyV-specific IgG2a responses similar to wild type responses. TLR7 and TLR9 double deficient mice generated similar skewed antibody isotype responses, where virus-specific IgG2a was reduced compared to wild type mice. This shows that TLR7 and TLR9-MyD88 mediated pathways are important in regulating IgG2a responses during a PyV infection. To investigate what components downstream of MyD88 are involved in mediating IgG2a responses, I worked with IRF5-deficient mice. IRF5 is a transcription factor that is activated upon stimulation of TLR7 or TLR9-MyD88-mediated pathways. Moreover, IRF5-deficient mice cannot generate autoantibodies specifically of the IgG2a isotype in a mouse lupus model, suggesting that IRF5 plays an important function in mediating class switching to IgG2a. In vitro studies where IRF5-/- B cells were stimulated with TLR7 or TLR9 ligands also generated low levels of γ2a germ-line transcripts, suggesting a B cell-intrinsic role for IRF5 in regulating γ2a germ-line transcription. PyV infection of IRF5-deficient mice resulted in similar skewed isotypes as observed in MyD88-deficient and 3d mice. To investigate a B cell-intrinsic role for IRF5 in regulating IgG2a responses in vivo upon PyV infection, I transferred IRF5-/- B cells and WT T cells into RAG KO mice prior to infection and compared the responses of these mice with mice reconstituted with wild type B6 B and T cells. Diminished numbers of IgG2a+ B cells and reduced levels of virus-specific IgG in mice reconstituted with IRF5-/- B cells were seen compared to mice reconstituted with wild type B cells. Regarding the defect in long-term IgG production in MyD88-/- mice upon PyV infection, I conducted studies in IRF5-/-, 3d, single TLR3-/-, TLR7-/-, TLR9-/- and TLR7/9 double deficient mice. These studies reveal an important and redundant role for TLR7- and TLR9-MyD88 signaling in maintaining long-term anti-PyV IgG responses. To determine how MyD88 signaling affects the generation of long-lived plasma cells and memory B cells, I investigated germinal center (GC) responses in MyD88-deficient mice. A defect in GC B cell numbers is observed in MyD88-deficient mice after the acute phase of infection. The GC reaction is essential for the generation and maintenance of long-lived plasma cells and memory B cells. T follicular helper (TFH) cells are absolutely required to generate normal GC. l found reduced numbers of TFH cells in MyD88-deficient mice. Lower numbers of T FH cells suggests that poor T cell help may contribute to the diminished number of GC B cells. However, interaction with B cells is required for the formation of fully differentiated TFH cells. Along with B cell function, MyD88 signaling can affect T cell and dendritic cell function as well. Thus, it is not clear at this point whether the requirement for intact MyD88 signaling for the formation and maintenance of long-term B cell populations is completely B cell-intrinsic. Some viruses can induce T cell-independent B cell responses, perhaps due to their complex arrays of repetitive antigenic epitopes on virions, coupled with the induction of innate cytokines. Nevertheless, T cell help is usually necessary for generating long-term antibody responses in the form of long-lived plasma cells and memory B cells. In contrast, our lab has found that T cell-deficient mice infected with PyV develop long-lasting, protective antiviral IgG responses. I questioned whether these mice could generate TI B cell memory cells or long-lived plasma cells. I show that long-lasting anti-PyV antibody in T cell-deficient mice was not due to the presence of long-lived plasma cells or memory B cell responses. TCRβδ deficient mice, which lack both CD4 and CD8 T cells, had ~10 a times higher virus load persisting in various organs. Therefore, I hypothesized that the high level of persistent PyV antigen, in completely T cell-deficient mice, may activate naïve B cell populations continuously, thereby maintaining the long-lasting IgG responses. Prior to PyV infection, T cell-deficient mice received wild type CD8 T cells, which reduced PyV loads, and this was associated with decreased levels of antiviral serum IgG over time. As in TCRβδ deficient mice, high PyV loads were detected in the bone marrow, which is the site for B cell lymphopoiesis, I questioned how B cells develop in the presence of PyV antigen and still stay responsive to PyV, generating long-term antiviral IgG responses in the periphery. Studies have shown that self-antigens that trigger both B cell receptor signaling and TLR-MyD88 signaling pathways in the bone marrow lead to the breaking of B cell tolerance and production of autoantibody in the periphery. Thus, we hypothesized that high PyV levels in the bone marrow signal through both B cell-receptors and TLRs, allowing continuous antiviral antibody production by B cells. Using mice that are deficient in T cells and MyD88 signaling, I found that PyV-specific TI IgG levels gradually decreased, supporting this hypothesis. Thus, high PyV loads and innate signaling together can break B cell tolerance. During a persistent virus infection this can result in sustaining long-term protective T cell-independent IgG responses

    Long-lasting T cell-independent IgG responses require MyD88-mediated pathways and are maintained by high levels of virus persistence

    Get PDF
    Many viruses induce acute T cell-independent (TI) B cell responses due to their repetitive epitopes and the induction of innate cytokines. Nevertheless, T cell help is thought necessary for the development of long-lasting antiviral antibody responses in the form of long-lived plasma cells and memory B cells. We found that T cell-deficient (T cell receptor beta and delta chain [TCRbetadelta] knockout [KO]) mice persistently infected with polyomavirus (PyV) had long-lasting antiviral serum IgG, and we questioned whether they could generate TI B cell memory. TCRbetadelta KO mice did not form germinal centers after PyV infection, lacked long-lived IgG-secreting plasma cells in bone marrow, and did not have detectable memory B cell responses. Mice deficient in CD4(+) T cells had a lower persisting virus load than TCRbetadelta KO mice, and these mice had short-lived antiviral IgG responses, suggesting that a high virus load is required to activate naive B cells continuously, and maintain the long-lasting serum IgG levels. Developing B cells in bone marrow encounter high levels of viral antigens, which can cross-link both their B cell receptor (BCR) and Toll-like receptors (TLRs), and this dual engagement may lead to a loss of their tolerance. Consistent with this hypothesis, antiviral serum IgG levels were greatly diminished in TCRbetadelta KO/MyD88(-/-) mice. We conclude that high persisting antigen levels and innate signaling can lead to the maintenance of long-lasting IgG responses even in the absence of T cell help. IMPORTANCE: Lifelong control of persistent virus infections is essential for host survival. Several members of the polyomavirus family are prevalent in humans, persisting at low levels in most people without clinical manifestations, but causing rare morbidity/mortality in the severely immune compromised. Studying the multiple mechanisms that control viral persistence in a mouse model, we previously found that murine polyomavirus (PyV) induces protective T cell-independent (TI) antiviral IgG. TI antibody (Ab) responses are usually short-lived, but T cell-deficient PyV-infected mice can live for many months. This study investigates how protective IgG is maintained under these circumstances and shows that these mice lack both forms of B cell memory, but they still have sustained antiviral IgG responses if they have high levels of persisting virus and intact MyD88-mediated pathways. These requirements may ensure life-saving protection against pathogens even in the absence of T cells, but they prevent the continuous generation of TI IgG against harmless antigens

    14-color flow cytometry to determine the contribution of mitochondrial mass to differences in glycolytic capacity in human immune cell subsets

    Full text link
    Mitochondrial metabolism controls immune cell function, but comprehensive tools to assess human primary immune cell metabolic capacity remain rudimentary. We previously demonstrated that CD19+ B cells rely more heavily on anaerobic glycolysis (i.e. are more glycolytic) than CD4+ T cells. Furthermore, both PBMCs and CD4+ T cells from subjects with type 2 diabetes (T2D) are more glycolytic than their counterparts from BMI-matched non-T2D controls. The contribution of mitochondrial mass, an indicator of non-glycolytic metabolism, to the various metabolic phenotypes is untested. To assess the contribution of immune cell subset identity and mitochondrial mass to the enhanced glycolytic capacity of resting B cells and PBMCs from T2D subjects, we designed a 13-color panel based on standard immune cell subset markers and chemokine receptors, and included MitoTracker Green FM (MTG), which quantitatively indicates mitochondrial mass. We used this novel panel to phenotype 63 total samples from BMI-matched subjects in three groups: non-T2D, pre-T2D, and fulminant T2D, as defined by American Diabetes Association guidelines. The panel was built in several iterations to accommodate spillover of MTG fluorescence into neighboring channels and includes, besides MTG and live-dead discriminator, the following surface markers: CD4, CD8, CD19, CD45RA, CD25, CD127, CD14, CCR4, CCR5, CCR6, CXCR3, and CD161. The PBMC samples were run on a 4-laser BD FACSARIA II SORP with pre-established panel-specific PMT voltages tracked using 6-peak Ultrarainbow beads. To normalize MTG fluorescence intensity and thus minimize batch effects, each of 5 total batches included a reference donor PBMC sample that was frozen in multiple aliquots from one blood draw. Using this approach, we quantified the percentages of immune cell populations (CD19+ B cells, CD8+ naĂŻve and memory/effector T cells, and CD4+ cells including Tregs and populations enriched in Th1, Th2 and Th17) along with the relative mitochondrial mass in each subset. We found that CD19+ B cells in PBMCs from both ND and T2D subjects had significantly less mitochondrial mass than CD4+ cells, supporting the demonstration that B cells are more glycolytic than CD4+ T cells. Of all the CD4+ T cell subsets, Th17 cells consistently had the lowest mitochondrial mass, consistent with the interpretation that Th17s are more dependent on glycolysis than previously appreciated. Our results validate the utility of our 13-color panel to simultaneously quantify relative mitochondrial mass in numerous immune cell subsets and thereby provide a new tool to explore metabolism in human primary cells

    Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes

    Get PDF
    Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D. Although glycolysis generally fuels inflammation, Nicholas, Proctor, and Agrawal et al. report that PBMCs from subjects with type 2 diabetes use a different mechanism to support chronic inflammation largely independent of fuel utilization. Loss- and gain-of-function experiments in cells from healthy subjects show mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2D-like inflammation

    Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis

    No full text
    Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.United States. National Institutes of Health (R01DK108056)United States. National Institutes of Health (R24DK090963

    Schematic of oxygen consumption trace from extracellular flux analysis.

    No full text
    <p>Oligomycin, ATP synthase inhibitor; 1 ÎĽM fluoro-carbonyl cyanide phenylhydrazone (FCCP), ionophore which shuttles hydrogen ions; rotenone and antimycin A, complex I and III inhibitor respectively, are added to cells sequentially to assess mitochondrial respiration.</p

    Technical considerations for performing flux analysis with primary human immune cells.

    No full text
    <p>(A) CD4 T cells were activated using anti-CD3/CD28 Dynabeads or a plate bound anti-CD3 and soluble anti-CD28 method for 40hrs. (N = 3) (B) Before running flux analysis, PBMCs were kept at room temperature (RT) or on ice during samples preparation (N = 3). (C) CD4+ T cells, isolated from PBMCs, were immediately activated for 40hrs and then frozen (Activated→Frozen) or CD4+ T cells, isolated from PBMCs, were first frozen, followed by T cell activation for 40hrs, then immediate flux analysis (Frozen→Activated) (N = 2). (D) Mitochondrial stress test profile from paired fresh (never frozen) PBMCs and PBMCs frozen for 6 months (N = 2). The mean centered basal respiration values of (E) resting PBMCs (N = 2) fresh or frozen for various amounts of time before flux analysis.</p

    Mitochondrial respiration in T and B cells from healthy lean donors.

    No full text
    <p>(A) OCR and (B) ECAR Mito Stress test Seahorse profiles for resting T and B cells from the same healthy individuals (N = 3). (C) Change in ECAR after addition of oligomycin. Data is the average of measurements 6–8 from panel B minus measurements 3–5. (D) Area under the curve analysis of ECAR profile. (E) Metabolic parameters and (F) OCR:ECAR at basal and maximal respiration using SHORE. Differences in panels C-F are determined by paired two-tailed student’s <i>t</i> test.</p
    corecore