135 research outputs found

    Mitochondrial Phenotypes in Purified Human Immune Cell Subtypes and Cell Mixtures

    Get PDF
    Using a high-throughput mitochondrial phenotyping platform to quantify multiple mitochondrial features among molecularly defined immune cell subtypes, we quantify the natural variation in mitochondrial DNA copy number (mtDNAcn), citrate synthase, and respiratory chain enzymatic activities in human neutrophils, monocytes, B cells, and naïve and memory T lymphocyte subtypes. In mixed peripheral blood mononuclear cells (PBMCs) from the same individuals, we show to what extent mitochondrial measures are confounded by both cell type distributions and contaminating platelets. Cell subtype-specific measures among women and men spanning four decades of life indicate potential age- and sex-related differences, including an age-related elevation in mtDNAcn, which are masked or blunted in mixed PBMCs. Finally, a proof-of-concept, repeated-measures study in a single individual validates cell type differences and also reveals week-to-week changes in mitochondrial activities. Larger studies are required to validate and mechanistically extend these findings. These mitochondrial phenotyping data build upon established immunometabolic differences among leukocyte subpopulations, and provide foundational quantitative knowledge to develop interpretable blood-based assays of mitochondrial health

    Rational exaggeration and counter-exaggeration in information aggregation games

    Full text link
    We study an information aggregation game in which each of a finite collection of “senders” receives a private signal and submits a report to the center, who then makes a decision based on the average of these reports. The integration of three features distinguishes our framework from the related literature: players’ reports are aggregated by a mechanistic averaging rule, their strategy sets are intervals rather than binary choices, and they are ex ante heterogeneous. In this setting, players engage in a “tug-of-war,” as they exaggerate and counter-exaggerate in order to manipulate the center’s decision. While incentives to exaggerate have been studied extensively, the phenomenon of counter-exaggeration is less well understood. Our main results are as follows. First, the cycle of counter-exaggeration can be broken only by the imposition of exogenous bounds on the space of admissible sender reports. Second, in the unique pure-strategy equilibrium, all but at most one player is constrained with positive probability by one of the report bounds. Our third and fourth results hold for a class of “anchored” games. We show that if the report space is strictly contained in the signal space, then welfare is increasing in the size of the report space, but if the containment relation is reversed, welfare is independent of the size of the space. Finally, the equilibrium performance of our heterogeneous players can be unambiguously ranked: a player’s equilibrium payoff is inversely related to the probability that her exaggeration will be thwarted by the report bounds
    corecore