9 research outputs found

    Antileukemic activity of sulfonamide conjugates of arabinosylcytosine

    No full text
    Aim: Cytosine arabinoside is routinely used for treatment of leukemias and lymphomas. However, because of its extensive metabolic inactivation and limited activity in chemotherapy, new analogues of araC are being tested. The aim of this work was to synthetize two araC conjugates and evaluates their cytotoxic/antileukemic activity. Methods: Synthesis of araC-sulfonamide conjugates A and B was performed in anhydrous conditions using cyclostyling and 5’-chlorocyclocytidine as starting material. Elemental analysis and NMR, IR and UV spectrometry were used for structure confirmation. The synthesized araC conjugates were tested for their cytotoxicity in L1210 leukemia cells in vitro and for therapeutic activity and toxicity in vivo in leukemia L1210-bearing mice. Results: The cytotoxic activities of araC and two synthesized conjugates A and B were expressed as IC50 (Β΅mol/l) and were compared respectively. The conjugate A is 303-times less active and the conjugate B is 757-times less active than araC. Consequently, the antileukemic activity and the acute toxicity of these compounds were examined in experiments involving leukemia L1210-bearing mice. Statistically significant therapeutic outcome was observed when the dosage of both araC conjugates was increased 10-times compared to araC. Next, the ration of cytotoxicity vs therapeutic activity for araC and both conjugates was performed. It was recorded that the ration between cytotoxicity and therapeutic activity for araC is 3333, for the conjugate A and B, the ration is significantly lower (110 and 44). This indicates that the inactivation of araC conjugate A is 30-times slower and the inactivation of conjugate B is 75-times slower as araC inactivation. Conclusions: The differences in cytotoxic and therapeutic activity registered in araC treatment and between two araC-analogues are most probably caused by slow liberation of araC from both conjugates. We are considered that prolonged araC liberation protected them from inactivation and extended the time period of therapeutic action both araC conjugates. The obtained results can serve as stimuli for further investigation of new araC-analogues.Π¦ΠΈΡ‚ΠΎΠ·ΠΈΠ½Π°Ρ€Π°Π±ΠΈΠ½ΠΎΠ·ΠΈΠ΄ (araC) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΏΡ€ΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π»Π΅ΠΉΠΊΠ΅ΠΌΠΈΠΈ ΠΈ Π»ΠΈΠΌΡ„ΠΎΠΌΡ‹, ΠΎΠ΄Π½Π°ΠΊΠΎ Π²Π²ΠΈΠ΄Ρƒ Π΅Π³ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ мСтаболичСской ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ Π»ΠΈΠΌΠΈΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ активности ΡΠΎΠ·Π΄Π°ΡŽΡ‚ΡΡ ΠΈ ΠΈΡΠΏΡ‹Ρ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π½ΠΎΠ²Ρ‹Π΅ Π°Π½Π°Π»ΠΎΠ³ΠΈ araC. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ β€” синтСз Π΄Π²ΡƒΡ… конъ- ΡŽΠ³Π°Ρ‚ΠΎΠ² araC ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΈΡ… цитотоксичСской/ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎ-лСйкСмичСской активности. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: синтСз ΡΡƒΠ»ΡŒΡ„ΠΎΠ½Π°ΠΌΠΈΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠ½ΡŠΡŽΒ­Π³Π°Ρ‚ΠΎΠ² araC A ΠΈ B ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π±Π΅Π·Π²ΠΎΠ΄Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ с использованиСм 5-Ρ…Π»ΠΎΡ€Ρ†ΠΈΠΊΠ»ΠΎΡ†ΠΈΡ‚ΠΈΠ΄ΠΈΠ½Π° Π² качСствС исходного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Для подтвСрТдСния структуры использовали элСмСнтный Π°Π½Π°Π»ΠΈΠ·, ЯМР, ИК ΠΈ Π£Π€ ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚Ρ‹ araC испытывали Π½Π° Ρ†ΠΈΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈΠ² ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π»Π΅ΠΉΠΊΠ΅ΠΌΠΈΠΈ Π»ΠΈΠ½ΠΈΠΈ L1210 in vitro, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ тСрапСвтичСской активности ΠΈ токсичности in vivo Π½Π° ΠΌΡ‹ΡˆΠ°Ρ… с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠΏΡƒΡ…ΠΎΠ»ΡŒΡŽ L1210. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Ρ†ΠΈΡ‚ΠΎΠΊΡΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ araC ΠΈ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ² A ΠΈ B Π²Ρ‹Ρ€Π°ΠΆΠ°Π»ΠΈ ΠΊΠ°ΠΊ 50 (¡М/Π»). ΠšΠΎΠ½ΡŠΡŽΒ­Π³Π°Ρ‚ A оказался Π² 303 Ρ€Π°Π·Π° ΠΌΠ΅Π½Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ, Π° ΠΊΠΎΠ½ΡŠΡŽΒ­Π³Π°Ρ‚Β Π’ β€” Π²Β 757 Ρ€Π°Π· ΠΌΠ΅Π½Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π΅Π½, Ρ‡Π΅ΠΌ araC. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎ Π»Π΅Π²ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΎΡΡ‚Ρ€ΡƒΡŽ Ρ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ соСдинСний исслСдовали Π² экспСримСнтах in vivo. БтатистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ различия Π² тСрапСвтичСской эффСктивности ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ ΠΏΡ€ΠΈ условии, Ссли Π΄ΠΎΠ·Ρ‹ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΈ Π² 10 Ρ€Π°Π· Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρ‚Π°ΠΊΠΎΠ²Ρ‹Π΅ araC. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ†ΠΈΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ тСрапСвтичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ для araC Π±Ρ‹Π»ΠΎ 3333, Ρ‚ΠΎ для ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ² A ΠΈ B эта Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π±Ρ‹Π»Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠΆΠ΅ (110 ΠΈ 44 соотвСтствСнно), Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ инактивация ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ² А ΠΈ Π’ araC происходит Π² 30 ΠΈ 70 Ρ€Π°Π· ΠΌΠ΅Π΄Π»Π΅Π½Π½Π΅Π΅ соотвСт­ствСнно, Ρ‡Π΅ΠΌ инактивация araC. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: различия Π² цитоксичСской ΠΈ тСрапСвтичСской активности araC ΠΈ Π°Ρ‚ΠΎΠ² вСроят­нСС всСго ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ мСдлСннымвысвобоТдСниСм araC, Π° ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ процСсс высвобоТдСния araC Π·Π°Ρ‰ΠΈΡ‰Π°Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ вСщСство ΠΎΡ‚ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ тСрапСвтичСского дСйствия ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ²

    Main targets of tetraaza macrocyclic copper complex on L1210 murine leukemia cells

    No full text
    Several metal complex agents have already been introduced into clinical tumor therapy and others are subject of antitumor studies. In this study we focused on the tetraaza macrocyclic copper complex (Cu(TAAB)Cl-2). We studied the influence of the substance on cell growth, cell cycle, membrane integrity, necrosis, apotosis and glutathione level on the leukemic cell line L1210 in 1-day (22 h) and 3-day (72 h) experiments. The metal complex shows a dose-dependent antiproliferative effect, without affecting cell cycle phases. The present results confirm that copper complex can damage plasmatic membranes and trigger apoptosis, and that after treatment of leukemic cells with the copper complex, glutathione levels were increased. (C) 2002 Elsevier Science Ltd. All rights reserved
    corecore