60 research outputs found

    Redox Regulation of β-Actin during Integrin-mediated Cell Adhesion

    Get PDF
    Redox sensitivity of actin toward an exogenous oxidative stress has recently been reported. We report here the first evidence of in vivo actin redox regulation by a physiological source of reactive oxygen species, specifically those species generated by integrin receptors during cell adhesion. Actin oxidation takes place via the formation of a mixed disulfide between cysteine 374 and glutathione; this modification is essential for spreading and for cytoskeleton organization. Impairment of actin glutathionylation, either through GSH depletion or expression of the C374A redox-insensitive mutant, greatly affects cell spreading and the formation of stress fibers, leading to inhibition of the disassembly of the actinomyosin complex. These data suggest that actin glutathionylation is essential for cell spreading and cytoskeleton organization and that it plays a key role in disassembly of actinomyosin complex during cell adhesion

    Low Molecular Weight Protein-tyrosine Phosphatase Tyrosine Phosphorylation by c-Src during Platelet-derived Growth Factor-induced Mitogenesis Correlates with Its Subcellular Targeting

    Get PDF
    The low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme that is involved in the early events of platelet-derived growth factor (PDGF) receptor signal transduction. Our previous results have shown that LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-induced mitogenesis. In particular LMW-PTP is involved in pathways that regulate the transcription of the immediately early genes myc and fos in response to growth factor stimulation. In this study we have established that, in nontransformed NIH3T3 cells, LMW-PTP exists constitutively in cytosolic and cytoskeleton-associated localization and that, after PDGF stimulation, c-Src is able to bind and to phosphorylate LMW-PTP only in the cytoskeleton-associated fraction. As a consequence of its tyrosine phosphorylation, LMW-PTP significantly increases its catalytic activity. After PDGF stimulation these two LMW-PTP pools act on distinct substrates, contributing in different manners to the PDGF receptor signaling. The cytoplasmic LMW-PTP fraction exerts its well known action on activated PDGF receptor. On the other hand we have now demonstrated that the cytoskeleton-associated LMW-PTP acts specifically on a few not yet identified proteins that become tyrosine-phosphorylated in response to the PDGF receptor activation. Finally, these two LMW-PTP pools markedly differ in the timing of the processes in which they are involved. The cytoplasmic LMW-PTP pool exerts its action within a few minutes from PDGF receptor activation (short term action), while tyrosine phosphorylation of cytoskeleton-associated LMW-PTP lasts for more than 40 min (long term action). In conclusion LMW-PTP is a striking example of an enzyme that exerts different functions and undergoes different regulation in consequence of its subcellular localization

    The Molecular Basis of the Differing Kinetic Behavior of the Two Low Molecular Mass Phosphotyrosine Protein Phosphatase Isoforms

    Get PDF
    The low molecular mass phosphotyrosine protein phosphatase is a cytosolic enzyme of 18 kDa. Mammalian species contain a single gene that codifies for two distinct isoenzymes; they are produced through alternative splicing and thus differ only in the sequence from residue 40 to residue 73. Isoenzymes differ also in substrate specificity and in the sensitivity to activity modulators. In our study, we mutated a number of residues included in the alternative 40-73 sequence by substituting the residues present in the type 2 isoenzyme with those present in type 1 and subsequently examined the kinetic properties of the purified mutated proteins. The results enabled us to identify the molecular site that determines the kinetic characteristics of each isoform; the residue in position 50 plays the main role in the determination of substrate specificity, while the residues in both positions 49 and 50 are involved in the strong activation of the type 2 low M(r) phosphotyrosine protein phosphatase isoenzyme by purine compounds such as guanosine and cGMP. The sequence 49-50 is included in a loop whose N terminus is linked to the beta 2-strand and whose C terminus is linked to the alpha 2-helix; this loop is very near the active site pocket. Our findings suggest that this loop is involved both in the regulation of the enzyme activity and in the determination of the substrate specificity of the two low M(r) phosphotyrosine protein phosphatase isoenzymes

    EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase

    Get PDF

    The low Mr phosphotyrosine protein phosphatase behaves differently when phosphorylated at Tyr131 or Tyr132 by Src kinase

    Get PDF
    AbstractThe low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) is phosphorylated by Src and Src-related kinases both in vitro and in vivo; in Jurkat cells, and in NIH-3T3 cells, it becomes tyrosine-phosphorylated upon stimulation by PDGF. In this study we show that pp60Src phosphorylates in vitro the enzyme at two tyrosine residues, Tyr131 and Tyr132, previously indicated as the main phosphorylation sites of the enzyme, whereas phosphorylation by the PDGF-R kinase is much less effective and not specific. The effects of LMW-PTP phosphorylation at each tyrosine residue were investigated by using Tyr131 and Tyr132 mutants. We found that the phosphorylation at either residue has differing effects on the enzyme behaviour: Tyr131 phosphorylation is followed by a strong (about 25-fold) increase of the enzyme specific activity, whereas phosphorylation at Tyr132 leads to Grb2 recruitment. These differing effects are discussed on the light of the enzyme structure
    corecore