4 research outputs found

    Integration of material and process modelling in a business decision support system: Case of COMPOSELECTOR H2020 project

    Get PDF
    This paper shares and contributes to a ground-breaking vision developed and being implemented which consists in the integration of materials modelling methodologies and knowledge-based systems with business process for decision making. The proposed concept moves towards a new paradigm of material and process selection and design by developing and implementing an integrated multi-disciplinary, multi-model and multi-field approach together with its software tool implementation for an accurate, reliable, efficient and cost effective prediction, design, fabrication, Life Cycle Engineering (LCE), cost analysis and decision making. This new paradigm of integrated material design is indeed endowed with a great potential by providing further insights that will promote further innovations on a broad scale

    A quadratic contact element passing the patch test

    Full text link
    For the two dimensional contact modeling, the standard node-to-segment quadratic contact elements are known to exhibit oscillations of the contact pressure. This situation is particularly critical when using the penalty method with a high penalty parameter because the amplitude of the oscillations increase with increasing penalty parameter. The aim of this article is to present a method for removing the oscillations of contact pressure observed while using quadratic contact element. For this purpose, the nodal forces at the slave and at the master nodes need to be evaluated appropriately. One possibility is to develop a suitable procedure for computing the nodal forces. In that sake, we selected the approach first proposed in [35] in an appropriate manner. After presenting the improved quadratic contact element, some numerical examples are illustrated in this paper to compare the standard quadratic node-to-segment element with the proposed element. The examples show that the proposed element can strongly reduce the oscillating contact pressure for both plane and curved contact surfaces

    Study of the influence of friction in imperfect conical indentation for elasto-plastic material

    Full text link
    peer reviewedThe investigation of this paper provides a rationale of the influence of friction in nanoindentation testing for elasto-plastic solids. The emphasis is placed on providing a detailed evaluation of the influence of the friction coefficient on the calculated hardness using an imperfect indenter. A new method for calculating the material hardness is derived. The new function can take into account the combined effects of friction and imperfect indenter tip geometry. For further investigations, some numerical simulations are executed. The results show that the new function can provide a good relationship for the hardness calculated in all friction cases. Moreover, the numerical simulations show that the friction coefficient does not significantly affect the curve of load versus indentation depth, whereas it significantly influences the deformations of the specimen surface around the indenter for some materials
    corecore