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A B S T R A C T

This paper shares and contributes to a ground-breaking vision developed and being implemented which consists
in the integration of materials modelling methodologies and knowledge-based systems with business process for
decision making. The proposed concept moves towards a new paradigm of material and process selection and
design by developing and implementing an integrated multi-disciplinary, multi-model and multi-field approach
together with its software tool implementation for an accurate, reliable, efficient and cost effective prediction,
design, fabrication, Life Cycle Engineering (LCE), cost analysis and decision making. This new paradigm of
integrated material design is indeed endowed with a great potential by providing further insights that will
promote further innovations on a broad scale.

1. Introduction

It has become increasingly evident that the selection and design of
composite materials and manufacturing processes are only possible by
taking into account multiple influences at different physical scales and
complex business processes [1]. To be reliable, this process must be
built upon a physical and engineering framework and based upon
methods that are systemic, effective and efficient in modelling complex,
hierarchical materials and process [2].

For composite material design and selection, understanding and
quantifying the links between material structure at the nano/me-
soscale/microscale and their macroscopic effects is, therefore, essential
and requires the integration of several models that have overlapping
scales (polymer chemistry, matrix-fibre interface, fibre properties and
topologies, etc.) [3,4]. This implies the need for development and in-
tegration of models to describe the behaviour of composite materials at
different scales as well as material-processing-property relationships

[5]. In parallel, high performance requires not only comprehensive
material properties modelling but also understanding of risks, costs, and
business opportunities for a range of decisions, from material selection
to designing functional structural components and systems. Last but not
least, design and selection of materials and manufacturing processes
must also accommodate societal requirements for health and sustain-
ability [6,7].

Developments and improvements have been taking place in dis-
parate communities considering different types of models and phe-
nomena on several different length scales, with advancements in so-
called “multiscale” approaches [8] and multi-disciplinary design opti-
misation [9–11]. Nevertheless, they are far from being sufficient for
materials design and selection, and suffer from a lack of integration
across different types of models and related communities (especially
discrete/continuum, modelling/experimental, material/process, sci-
ence/engineering/business). This is a truly challenging task and calls
for the definition of workflows and model coupling/linking that
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account, at finer scales, for various kinds of heterogeneities and physics.
Since material selection and design for a particular functionality is in-
timately associated with the manufacturing process, attention should be
given to link composite material and manufacturing selection in a
systematic integrated approach including process-structure and struc-
ture–property relations.

The complexity and the interdisciplinary of this topic that require a
fully integrated framework consisting of materials models coupled to
process models allowing the seamless integration of material and pro-
cess modelling workflows, solvers, post-processors together with busi-
ness models and interoperability modules. The interoperability implies
by definition the use of standards based abstract workflow definitions
which can be stored, mined and re-used [13], together with specific
communication protocols and conversion tools [14].

COMPOSELECTOR H2020 project proposes to develop a Business
Decision Support System (BDSS), which integrates materials modelling,
business tools and databases into a single workflow to support the
complex decision process involved in the selection and design of
polymer-matrix composites (PMCs) by means of an open integration
platform which enables interoperability and information management
of materials models and data and connects a “rich” materials modelling
layer with industry standard business process models. Material and
process models, software integration and along with archiving of data
and metadata are presented here in the context of “multiscale” models.
The presented application case exhibits how advanced selection and
design process could be handled using the proposed approach. The
application case is translated into a workflow consisting of materials
modelling and materials data components using the materials model-
ling data (MODA) template [13] extended to include process models.
This defines on a high level the requirements regarding input data,
materials models and their coupling and linking, and the post-proces-
sing of raw data in order to arrive at the key performances needed.

2. BDSS definition and requirements

The developed BDSS proposes to integrate material and process
modelling, business tools and databases into a single workflow to
support the complex decision process involved in the selection and
design of polymer-matrix composites by means of an open integration
platform which enables interoperability and information management
of materials models and data and connects a “rich” materials modelling
layer with industry standard business process models. The BDSS is built
on three “pillar” technologies (Fig. 1):

1. Materials and Process Modelling
2. Business Decision System
3. Data Integration

These pillars, represented by individual software tools, are inter-
connected and integrated into the BDSS platform. The interoperability
layer will also seek compatibility with platforms from other BDSS
projects, by contributing and adhering to the European Materials
Modelling Ontology (EMMO) metadata and interoperability standard
emerging via the collaboration within the context of the European
Materials Modelling Council. The integration of different existing soft-
ware solutions by means of an interoperability and metadata layer al-
lows for carrying out multidisciplinary/multi-objective optimisation
and analytics for material and process evaluation, uncertainty man-
agement and selection, spanning through “cradle-to-grave” lifetime of a
product.

In line with the core elements shown in (Fig. 1), the functionalities
integrated in the BDSS are presented in the following subsections.

2.1. Tailored Knowledge Apps to support decision makers

Typically, the tools are accessible via web based environment. The
Knowledge Apps are integrated with business process systems based on
the Business Process Model Notation (BPMN 2.0) standard [16]. This
standard integration of defined business processes guarantees that the
developed BDSS will be easily adaptable to any industrial sector. In
particular, decision requirements and decision models will be in-
tegrated in the business process workflow and automated tasks as well
as human interaction for business decision activities will be supported.

2.2. Actionable choices

Decision Makers require actionable choices that are the result of
multi-criteria optimisation over all stages of product development,
taking uncertainties, risks and opportunities into account. Choices
should even extend to allow back engineering from the end-goal. In
order to support this requirement, the BDSS as proposed in COMPOS-
ELECTOR has a strong focus on the integration and innovative devel-
opment of a Multi-Disciplinary Optimisation (MDO) framework, which
will allow for time, resources and costs saving while increasing per-
formance and functionality. One of the key enablers of the approach
proposed is the ability to account for different class/aspects of un-
certainty within models, experiments, design processes, cost of mod-
elling, personnel and expertise. The material selection process involves
distinct but coupled subsystems with large number of design para-
meters, constraints, and performance metrics and multidisciplinary
formulation with multiple objectives and constraints. Surrogate model
and a Bayesian Network Classifiers mapping approach are proposed for
efficient search and uncertainty modelling and management, imprecise
problem formulation will be incorporated. modeFRONTIER [15] is used
in this context. Using modeFRONTIER, design teams can upload and
organise models and data, create and reuse multiple optimisation
strategies, execute huge numbers of jobs on a distributed execution
network interfacing with HPC systems and cloud environments and
perform data analysis using an array of post processing tools, safe in the
knowledge that project integrity is safeguarded by reliable project
versioning that aggregates design changes continuously under con-
trolled conditions.

2.3. Integrated materials and process modelling

Innovative methodologies to connect models are being developed
by enriching materials and manufacturing process-modelling frame-
work with metadata schema and semantic interoperability. This is
achieved by implementing approaches for Key Performance Indicators
(KPI)-driven property calculations (See application case for moreFig. 1. BDSS core elements and pillars.
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details) and by proposing advanced methods for model selection and
model adaptivity. The developed modelling and simulation framework
provides a unified environment and supports interoperability for
modelling linked and coupled physical phenomena making the in-
tegration of new workflows much faster and less error prone. It is worth
to mention that the platform supports multi-model coupling/linking to
transfer information between models for an integrated workflow cov-
ering all scales and process stages of the application case. Therefore,
removing the need to artificially isolate individual processes in the
quest for a tractable problem.

2.4. Interoperability and metadata

Interoperability involves the development of an effective approach
for materials information management across modelling and experi-
ment, materials modelling integration and communication including
reference standards and standardised methods for the representation,
storage and communication of models. It also supports knowledge
management of models and workflows, a key feature for business sys-
tems and value chain interactions [18]. Proper definition of interfaces,
data structures, schemas and associated metadata is a prerequisite to
guarantee interoperability among different materials modelling com-
ponents as well as to support knowledge management across materials
modelling data, business data, or LCE models. The BDSS platform
overcomes the incompatibility in existing components by i) developing
and implementing a “unified data and model representation archi-
tecture” using abstract classes defining common generic interfaces, and
ii) using metadata schemas to facilitate semantic interoperability. This
effort includes i) designing and implementing metadata schemas and
Application Programming Interfaces (API) for materials and processes
models and ii) designing and developing case study specific templates
for materials modelling workflow chains, allowing to replace individual
commercial/open-source codes in materials modelling. The metadata
schemas for materials and processes models are being developed in
order to describe also materials and related business and LCE data. This
will lead to a rigorous quantification of all levels of materials structure
in a large number of distinct material configurations, a repository for
materials data and source of input data for materials modelling.

3. BDSS platform architecture

The BDSS integrates materials modelling, business tools and data-
bases by following a well-defined ISO standard business process format
(Fig. 2), Fig. 3). The business layer will be based on two well-defined
standards: BPMN 2.0, the last version of the Business Process Model
Notation standard defined by the Object Management Group (OMG),
ISO standard ISO/IEC 19510:2013 [16], and the DMN [17], the Deci-
sion Making Notation standard, also defined by the OMG. The use of a
standard representation (ISO standard ISO/IEC 19510:2013) and the
Decision Model and Notations (DMN) [17] for business processes will
make available the decision-making strategy across the different sectors
and users. The BDSS could be connected with any third party platform.
The developed workflows in MuPIF [20] are software components de-
fining documented interface enabling to set input parameters, execute
workflows and query outputs, thus allowing integration into other in-
tegration platforms such as Pipeline Pilot, Knime (Fig. 2).

BPMN includes graphic representations for business process work-
flows, and an associated XML-based executable representation, which
can be used in business related engineering applications (Fig. 4). The
DMN standard, which has been designed to work alongside BPMN,
provides a mechanism for modelling the decision-making represented
in a BPMN task within a business process model. By using DMN, it will
be possible to specify sequence of actions to be followed after a decision
has been taken, including those that are required to meet a certain
directive, decide who or what participant should perform an activity or
create specific values to be consumed later in the process. DMN sup-
ports the identification of the most important decisions, describing their
impact on the global business objectives. User interaction is an essential
element required for business decision activities. The single workflow
will account for the complete production chain involving all the major
processes and, at the same time, all possible parameters affecting the
costs and other important factors under consideration. In this way, the
BDSS decision layer will be able to control, manage and automate the
repeatable decisions central to its business by effectively applying
business rules, analytics and optimisation technologies.

MuPIF interoperability platform [20] provides high-level support
for simulation tool data exchange and steering and servers as the si-
mulation platform, where the distributed simulation workflows are
defined and executed [21]. In MuPIF, the generic abstract classes are
introduced for models (simulation tools) and generic data types, such as

Fig. 2. High-level implementation view of BDSS. The BDSS gathers information from all points in the platform in view of end user informed decisions.
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properties, spatial fields, time steps, etc. The definition of abstract in-
terfaces for models as well as for high level data types is one of the
unique features of the MuPIF. It allows to achieve true plug&play ar-
chitecture, where individual application as well as data representations
can be plugged into existing workflows and be manipulated using the
same generic interface. All classes are derived from top level abstract
class, MuPIF-Object, declaring a generic interface common to all com-
ponents. It defines the services allowing to attach the additional in-
formation about the individual object, so called metadata. The meta-
data plays an important role, as they allow to track the origin of the
data, information about data units, etc. Some metadata have to be
defined by user or simulation tool, some can be automatically collected
by the platform. The interoperability in MuPIF is achieved by stan-
dardisation of application and data component interfaces, it is not re-
lying on standardised data structures or protocols. Any existing data
format can be plugged in and transparently used, provided the corre-
sponding data interface is implemented.

From the software point of view, the BDSS is composed of three
main modules: 1) the business layer, 2) the database and workflow
manager and 3) the interoperability platform as shown in Fig. 3. All
modules are connected with a well-defined Application Programming
Interface (API), providing a loosely coupled modular and scalable so-
lution. The business layer provides support for the creation and ex-
ecution of material modelling business process, which are defined in
terms of a standard representation of business process logic (the pro-
cedural flow of tasks) and business rules (declarative conditions leading
to the conclusions of business decisions). This support is provided by a
BPMN standard web-based graphical editor that support business
workflow creation (the BeePMN editor), a business workflow engine
that provides standard BPMN workflow execution support and a stan-
dard DMN engine for standard DMN rules execution. The BPMN engine
provides support for fully automated tasks (like a request for model
simulation to be delivered to the interoperability layer) and also for the
so-called human tasks, where user intervention is required in order to

Fig. 3. High level Architecture between Business layer, Database and Simulation platform.

Fig. 4. Business Process Implementation in BPMN: The use of a standard representation for business processes will improve the decision-making strategy across the
different sectors of the company.
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complete a task or take a business decision.
The main user interaction entry point of the BDSS is web-based,

allowing users to access core services through a standard web browser,
providing an easy to use system, where users can connect from any
location, at any time, from computers and also from mobile devices.
The access to the BDSS is granted by using a single-sign-on approach,
which provides user authentication and authorisation services in terms
of the most up-to-date security standards. In this way, a clear separation
of user roles can be provided, with strict control on simulation execu-
tion services and appropriate sharing of information supporting user
interaction and collaboration.

The database and workflow manager layer (see Fig. 3) has two main
tasks. On the one side, this layer provides the required database storage
support for all data required and generated by the BDSS and on the
other side, interacts with the interoperability layer to request simula-
tion workflow executions. Requests for simulation workflow execution
are usually received from the business layer, which after been com-
pleted with the required data, are passed to the interoperability layer
for execution. This process can be fully automatic, when all information
about required data is already defined, or can include user interaction if
required. Also, this layer takes care of storing all data produced by si-
mulation workflows, providing support for browse, search, visualisa-
tion and report operations.

The workflow presented in Fig. 4 and in Fig. 5 is an example of a
business process, which represents a decision manager process for
”eligibility/approval” of a customer order, which requires simulation
analysis and market information to determine its current business op-
portunity. A set of business rules has been defined by using DMN, which
guides his decision process. This information can include the results of
the simulation and results obtained from queries to databases and/or
price information coming directly from real-time market sites. Based on
that information, the decision maker takes a guided decision (im-
plemented in terms of DMN) in order to determine the processing of the
customer order. The decision-making node implements a decision

process in DMN. Decisions are represented in terms of business rules,
which automates the most common decisions and promote consistent
results when used many times. The decision table (Fig. 5) are intended
to produce an overall evaluation and decision. Based on this decision
model, the decision maker is provided with all the information that is
required to take a decision in this particular case, no more and no less.
Of course, other business process workflows, which involve decision
activities for risk evaluation, opportunity analysis, maximising impact
or profit, can be represented in terms of business process workflows
(BPMN 2.0) and decision-making rules (DMN). On Fig. 6 is depicted an
example of DMN decision table for atomistic and mesoscopic models.

4. Model evaluation and selection

Selecting the appropriate model is of key importance for a reliable
decision process. Specifically, the following features are analysed: i)
effect of model resolution (uncertainty) on business decisions; ii)
matching modelling strategies with business decision needs; iii) trans-
lation of process modelling value (cost/benefits), cost and triggers (part
complexity/size/materials/process) and iv) evaluation of optimisation
strategies for trade-offs in decisions. Furthermore, some selected case
studies will permit to assess a judicious level of modelling complexity
and recommend efficient simulation procedures, which should be as
transparent and lean as possible for the end-users. Mechanisms for
model selection are being developed and implemented within the BDSS.
Typically, at each scale there can be a choice of several models with
diverse quality, robustness and complexity (see Fig. 7). Notice that we
use a “modelling strategy selection” instead of “model selection”. The
reason is that individual models may have different dependencies,
while strategies can have more or less defined dependencies. Based on
the sensitivity measures, the model robustness, model utility and model
complexity (see Fig. 7), we provide with an approach for the model
evaluation and selection. The utility of a model is defined considering
the problem on hand i.e. the user case and the attributes to be

Fig. 5. The single graphical workflow as proposed in the BDSS includes standard BPMN task nodes, plus an activity node specifically designed to interact with the
MuPIF simulation layer [17], task nodes to perform queries to databases and human interaction task nodes specifically design to interact with the BDSS.
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estimated. The utility of a model is determined according to the in-
formation we have reflecting the specific objective at hand. The deci-
sion might include theoretical and computational considerations. The
robustness is defined as the degree that model is physics based. This
represents the capability of the model to predict the physical properties
and represent the physical reality. The complexity of model combines
both model and software implementation complexities. The sensitivity
analysis (estimation of sensitivity indices) permits to determine the
most important uncertain input-parameters, their correlation and to
quantify their impact on the predicted output.

Decision tables are constructed based on robustness, sensitivity and
complexity. A weight (0 < W < 1) is assigned based on the quality
(i.e. robustness, sensitivity, complexity) of the individual partial
models. The need to separate this decision logic for model selection
from the model selection and the user-case has motivated the use of
DMN for model selection.

4.1. Model complexity

The decision on the complexity level for each model depends on the
purpose of the modelling effort (Fig. 8) and data availability and ac-
cessibility. The factors that are used to estimate model complexity are:

1. Structure and the level of detail in the processes that make up the
model.

2. The number of parameters and state variables
3. The sophistication of the mathematical relationships that describe

each process
4. Number of processes in the model
5. The resources required to solve the model

4.2. Model robustness

Model output needs verification, interpretation and validation and
should not be necessarily always believed to be the truth. Model ro-
bustness is therefore necessary and it is defined as the capability of the
model to predict the physical properties even when some “perturba-
tions” are present/introduced. In other words we should answer the
following questions/requirements:

– Did the model represent the physical reality?
– Is there any documented verification and experimental validations
of the model?
– What is the number of modelling assumptions that can be relaxed
without overturning the conclusions (outputs)?

4.3. Model sensitivity

Sensitivity Analysis (SA) investigates how the variation in the
output of a model can be attributed to variations of its input factors.
The goal is to verify the consistency of the model behaviour and to
assess the robustness of the model to uncertain inputs or model as-
sumptions (Fig. 9). When used for model evaluation, SA is used to in-
dicate whether there are “unnecessarily” represented processes in the
model workflow and thus identify potential for model simplification.
With this regard, the sensitivity analysis provides additional informa-
tion beyond what is typically considered a part of an uncertainty
quantification analysis. Based on the sensitivity indices, it is possible to
determine the most important uncertain input-parameters, their cor-
relation and to quantify their impact on the predicted output. For global
sensitivity analysis, different types of sensitivity indices can be used,
ranging from correlation measures between inputs and output to sta-
tistical properties of the output distribution.

Fig. 6. The single graphical workflow as proposed in the BDSS includes standard BPMN task nodes, plus an activity node specifically designed to interact with the
MuPIF simulation layer [17], task nodes to perform queries to databases and human interaction task nodes specifically design to interact with the BDSS.

Fig. 7. Model Selection based on the model quality (i.e. reliability, sensitivity),
robustness, model complexity and KPIs.

Fig. 8. Model complexity based model selection.
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4.4. Modelling strategy

Figs. 10 and 11 illustrate the material modelling strategy. At the top
level, the properties acting as key performance indicators can be
modelled using various solvers technologies (for example finite ele-
ments, boundary elements, finite difference method, etc.) or models
with varying physical complexity. Thus, a choice has to be made among
the several models enabling the determination of one or more KPIs. The
material input parameters required for this top modelling layer will
either be provided by modelling at a lower scale, or by databases fed by
literature or experiments. At this scale, databases or several modelling
techniques and models with varying levels of complexity may be used
for obtaining one or more material parameters required by the mod-
elling level above. For example, some material properties may be ob-
tained by a simple micro-mechanical model of the composite structure
or by more complex modelling of the production process like, for in-
stance, thermoforming or resin transfer moulding. The material para-
meters required for modelling at this scale may then be obtained by
more or less complex models, for example molecular dynamics, coarse-
grained models, etc., or by database lookup. The number of modelling
layers may be increased by including layers with more refined methods,
like atomistic models or others. It should be noted that the last scale of
modelling will entirely depend on material or structure properties ob-
tained from database lookup. Notice that for some strategies, not all
scales (levels) have to considered/included, as can be replaced by in-
cluding assumptions/heuristics. As illustrated in Fig. 11, at each level,
various models exist for obtaining the required input for the next levels,
or the KPI at the top level, respectively. This choice has to be made by
considerations of availability, computing time and cost, as well as the
precision required in the application case assembled in a DMN table
Fig. 10. Considering that data, at a given scale, are only known to a
certain degree (uncertainties), we can afford to choose less accurate

models that are faster to evaluate, provided that the resulting error is of
the order of the global uncertainties. In order to formalise this idea, key
quantities will be considered uncertain at the finest scale, where the
material is described, and at the coarsest scale, where the engineering
problem is described. The chain of models will be allowed to transport
these uncertainties through the scales, using robust uncertainty quan-
tification or probabilistic analysis by sampling methods. In addition, the
following statements and remarks should be added:Fig. 12.

– The business decision will influence how the modelling should be
done based on cost, time, fidelity, etc.
– The global simulations workflows will be decomposed into in-
dividual tasks (determination of single KPI, process simulation,
etc.). These tasks together with their input/output requirements will
be identified for each case study.
– Alternative implementation of individual tasks (represented by so
called task workflows) with different performance indicators (time
requirements, cost, fidelity of results, etc.) will be implemented. The
availability of alternative task workflows (yielding the specific ac-
tion) would allow the BDSS to explore different modelling options
based on different business and/or technical requirements (perfor-
mance indicators).

This single workflow will allow accounting for the complete production
chain involving all the major processes and, at the same time, all pos-
sible parameters affecting the costs and other important factors under
consideration. Each workflow should define its performance indicators
(as workflow metadata). The task workflows should have some general
common inputs-outputs. The individual workflows will depend on ad-
ditional parameters-properties, which can be obtained by simulation or
from database, however this logic must be implemented into specific
workflow. This way the BDSS is able to freely combine different alter-
natives without being concerned by i/o dependencies. In parallel, a
business decision mechanism based on a balance between investment
(complexity and number of inputs) and return will be implemented to
decide on the type of models (in a chain) namely electronic, atomistic,
mesoscopic and/or continuum Fig. 11.

The lines in Fig. 11 indicate that different models at relevant scales
can be used to drive a variety of “actions”. Here, “action” refers to the
estimation of specific technical or business KPI. Notice that each ap-
plication case is translated into a workflow consisting of materials
modelling and materials data components using the MODA (Modelling
Data) materials modelling data templates as a starting point [13].

5. User-case application

The objective of introducing composites (carbon and glass re-
inforced polymer composites) into the body structure of a vehicle is to
reduce weight and to improve energy efficiency. Reduction of mass
potential is considerable when using composites, consequently the
greatest hurdle lies not in merely achieving a significant mass reduc-
tion, it lies in the new technical and business (financial) challenges that
will arise when composite structures are introduced into the high vo-
lume automotive sector. The technical novelty in this application is the
use of carbon reinforced polymers (CRFP) in parallel with glass-re-
inforced polymers (GFRP).

The suspension leaf spring is one of the potential items for higher
strength in automobiles. Composite leaf springs serve as the elastic
elements and guiding mechanism of the suspension in automotive de-
sign (Fig. 13). The technical novelty in this application is the use of
carbon reinforced polymers (CRFP) in parallel with glass-reinforced
polymers (GFRP), which is the standard work piece material for this
type of application. The proposed application case is towards the ap-
plication of the BDSS for material selection and manufacturing process
for composite leaf spring (Fig. 14). For the behaviour of the leaf spring,
the mechanical strength and stiffness are major characteristics.

Fig. 9. Complexity-Sensitivity-Uncertainty: Model sensitivity increases with
increasing model complexity and model uncertainty decreases with Model
Complexity.

Fig. 10. Sample decision table with its constitutive elements for model selec-
tion. The model selection and also the selection of the partial models should to
be done/assessed by a framework for model assessment base on Model
Robustness, Model Sensitivity, Model Complexity.

S. Belouettar et al. Composite Structures 204 (2018) 778–790

784



5.1. Key performance indicators

This application would illustrate the capability of BDSS for material
and process selection for large production: (72000 parts/year
+/−20%). In this specific application, the KPIs are: mechanical

performances, weight, time cycle, processing, material usage, cost and
life cycle engineering (see Table 1). The example of the leaf spring
could be extended to all the application where the integration of the
composite material in the car body structure is concerned. The in-
dividual models and associated modelling workflows are depicted on

Fig. 11. Model Strategy Selection Strategy.

Fig. 12. Business decision should influence how the modelling should be done based on cost, time and fidelity, for example.
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Fig. 15.
At design level, the challenge of balancing technical requirement

(static and dynamic performances) with manufacturing aspects and
weight reduction remains. The composite and part design (i.e. struc-
tural design) is the first important decision for material selection phase.
The potential of structural design allows for the weight optimisation of
the structure, not only by improving geometrical shape but also de-
signing the final material for certain requirements i.e. structural design
optimisation. The car body structure is accounting for 20–25% of the

overall vehicle weight. It is also the main load-carrying structure,
providing overall vehicle properties, governing handling and, more
importantly, the passive safety of the vehicle. By reducing the weight of
the body structure, consequent weight reductions of related systems
such as engine, brakes etc. can follow which will further reduce the
overall weight of the vehicle. The objective is to reduce the weight of
leaf spring without any reduction on load carrying capacity and stiff-
ness.

When focusing on high volume manufacturing such for the auto-
motive industry, material cost is one of the main the greatest barrier for
the use of composites. Consequently, despite great lightweight poten-
tial, the challenge is to achieve the weight reduction with a feasible
business application. Such applications demand new approaches to
composite design and manufacturing. Initial material and process se-
lection influences many of these aspects, choices here can restrict later
design and weight reduction potential by limiting structural design
potential, influencing material utilisation and process efficiency.

The choice of composite material system, as well as manufacturing

Fig. 13. Transverse Rear Leaf spring (1 per vehicle). The thickness: should
come from optimisation e.g. 22mm in the middle, 18mm at the end. For the
behaviour of the leaf spring, the stiffness and the mechanical strength and
stiffness are major characteristics.

Fig. 14. Workflow describing the operational steps in the leaf-spring composite manufacturing process and related business KPI. The underlying approach for
workflow selection is to connect the simulation workflow outputs and the business and technical KPIs that deliver relevant data to allow decision making.

Table 1
Leafspring Technical and Business Key Performance Indicators.

KPI1 Minimum Stiffness: 300 N/mm
KPI2 Minimum Tensile Strength (MPa): 700
KPI3 Elongation to break 3.5%
KPI4 Production rate: 72000 parts/year +/−20%
KPI5 Flexibility: cope with a variety of sizes
KPI6 Weight reduction of 50% versus steel
KPI7 Value of weight saving: 5 Euro/kg
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process, greatly influences the final properties of the structure. For in-
stance, liquid composite moulding processes are often more cost ef-
fective using virgin materials, fibre and resin, purchased at lower levels
in the value chain. As a result, the manufacturing process becomes more
complex and requires longer cycle times. Compression moulding pro-
cesses on the contrary are rapid and require simpler tools and therefore
less investment. These material systems, however, consequently be-
come more expensive since the pre-impregnation of the fibres increases
the value of the material system. In addition, manufacturing constraints
will limit the weight reduction potential of the composite, although
they will also increase the industrial relevance of the results and
therefore are especially important for composites in conceptual design.

5.2. Material specifications

Epoxy Resins are used for this application. Epoxy resins are rea-
sonably stable to chemical attacks and are excellent adherents having
slow shrinkage during curing and no emission of volatile gases. Four (4)
formulations with well-known ingredients (molecular structure) and
well know properties will be used:

– Epoxy I: Longer Cure; Higher mechanical properties (Aromatic
Amines); DER 330/331 epoxy +DETDA (Ethacure 100)

– Epoxy II: Medium Cure, Medium mechanical properties
(Cycloaliphatic Amines); DER 330/331 epoxy + IPDA 30min cure
time
– Epoxy III: Faster Cure: 15min cure time; Lower mechanical
properties (Aliphatic Amines); DER 330/331 epoxy +TETA/DETA
- typical 60min + cure time
– Hardener: is mainly used to cure the epoxy resin, which causes a
chemical reaction without changing its own composition. The
curing time mainly depends on the hardener and epoxy mixing ratio.
– Process Temperature: Process temperature is another parameter
to influence flowtime to cure: e.g. we could go to 15 mns cure time
for the IPDA if you use higher processing times. By properly se-
lecting the % of reinforcement and its orientation it is possible to
achieve higher order stiffness and consequently higher natural fre-
quency.
– Formulations baseline: 1:1 (resin–hardener ratio) with possibi-
lity to go up down 10% at both sides.

Both glass and carbon fibre option will be evaluated. Glass fibres, with a
Young’s modulus similar to aluminium (70 GPa), exist in different
grades of strength and provides a good combination of low cost and
high material properties. Carbon fibre comes in different grades: high
strength (HS), intermediate modulus (IM) and high modulus (HM) are
common. The most common fibre-reinforced composites are competi-
tive engineering materials, carbon fibre composites in particular.
Compared to other engineering materials, carbon fibre composites
possess almost unsurpassed weight specific mechanical properties.
Their greatest drawback, as described in the introduction, is their cost
being very expensive at around 20 Euro/kg.

5.3. Modelling data (MODA)

The MODA defines a high level the requirements regarding input

Fig. 15. Key Performance Indicators for material and process selections for the leaf-spring design and manufacturing.

Table 2
Chain of models.

MODEL 1 ATOMISTIC model (MD)
MODEL 2 MESOSCOPIC model (DPD)
MODEL 3 CONTINUUM model (properties of the tows)
MODEL 4 CONTINUUM model (modelling of the preforming)
MODEL 5 CONTINUUM model (fluid mechanics of impregnation)
MODEL 6 CONTINUUM model (curing)
MODEL 7 CONTINUUM model (final component)
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Fig. 16. Schematic representation of possible MODA workflow[13].
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data, materials models (Table 2) and their coupling and linking, and the
post-processing of raw data (Fig. 16) in order to arrive at the proper-
ties/technical KPIs needed for the validation of the application cases.

The atomistic model (Model 1) is used to calculate the system
equilibrium density d at different temperatures, different degree of
curing, and different chemistries. From the fitting of the two portions of
the d= f(T) curves in the rubbery and glassy regimes the glass transi-
tion temperature Tg can be estimated. The same model will be used to
predict the elastic constant C11 and the bulk modulus K for the resin at
different degree of curing and different temperatures. C11 and K are
obtained by unidirectional compression/tension and hydrostatic com-
pression/tension simulations, respectively. Finally, the Young modulus
and Poisson’s ratio are calculated from C11 and K via the fundamental
relationships of linear elasticity. The temperature dependence of the
Young modulus at a given degree of curing Tg can also be estimated by
sigmoidal fitting of E vs T data as an alternative method. Model 1 is also
employed to predict stress-strain curves for the resin at a given degree
of curing and in the presence of a given amount of filler. From these
data, Young modulus, tensile strength, and failure strain for the pure
resin and the filler-loaded systems can be estimated. Model 1 is finally
used to derive molecular quantities required to calculate the input
parameters for Model 2 (Mesoscopic model), e.g., the polymer char-
acteristic ratio, the monomer molecular volume and the solubility
parameters of polymer and fillers.

Model 2 is adopted to predict the extension of the interface and the
Young modulus at the interface between the resin and the filler at each
given degree of curing, resin chemistry, filler loading, and filler aspect
ratio. Model 2 is also employed to determine the rheological (i.e., vis-
coelastic properties) and thermal conductivity of the resin and the re-
levant filler-loaded composites as a function of the degree of curing and
filler loading. Finally, Model 2 is adopted to estimate the structure and
the time course of the curing reaction as a function of the chemistry.

The continuum model (Model 3) will be used to simulate the
properties of the tows made of thousands of filaments. The aim is to
estimate the mechanical properties of the tows and to produce a kine-
matic model of UD composite preforms that will be used in model 4.

The continuum model (Model 4) will be used to simulate the pre-
form of the fibre bed. The shape and local flow characteristics of the
deformed fibre bed (reinforcement) will be realistically defined for the
impregnation (Model 5) and the curing processes (Model 6). The output
of Model 4 will be used in for selecting the most suitable preform and
preform configurations. Model 4 will predict the reinforcing fibre vo-
lume fraction and for a given set of preforming constraints and pro-
cessing parameters.

Model 5 is adopted to simulate the impregnation process of the
resin. Model 5 uses the outputs of Model 1 and Model 2: rheological
properties of the resin, the resin kinetics and the viscosity over tem-
perature, etc. As output, Model 5 provides volume fraction of resin,
pressure field and resin velocity.

Model 6 is adopted to simulate the curing process of the thermoset
requires a complete set of reliable material data. Model 6 requires a set
of simulated inputs that are provided by Model 1 and Model 2. Model 6
will include solving energy and momentum equations in conjunction
with pre- and post-curing, cure kinetics, thermoset shrinkage, thermal
dilatation and appropriate Material Relation MR model ([13]) of the
polymer to predict temperature and residual stress fields. Model 6 will
be used to predict the material microstructure evolution due to curing.

Simulated deformation and stress results after curing (Model 6) will
be used in Model (7) to estimate the leaf-spring structural properties.

6. Conclusion

In this paper, a new approach aiming at coupling material model-
ling with business data and models have been presented. The objective
is develop a Business Decision Support System (BDSS), which integrates
materials modelling, business tools and databases into a single

workflow to support the complex decision process involved in the se-
lection and design of polymer-matrix composites (PMCs) by means of
an open integration platform which enables interoperability and in-
formation management of materials models and data and connects a
“rich” materials modelling layer with industry standard business pro-
cess models. The BDSS and the modelling capabilities as developed
within COMPOSELECTOR will be used both optimal material use and
control of material production. The results of such calculations will
permit the fast qualification of existing products but also open new
opportunities for optimal and advanced material selection thanks to the
integration of materials modelling, business tools, and databases into a
single workflow. The challenges implied by the massive use of com-
posite materials e.g. in aerospace and transports fields, are tremendous.
Diminishing cycle-time, automatised processes, and improving material
selection are a key factor to lower the costs and increase the competi-
tiveness. For transport applications, for instance, enhancing the per-
formance and footprint by improving performances over mass (e.g. size
and strength per mass) is among the most notable material selection
and design challenges. In terms of polymer based composite material
selection and design, this challenge can be won only via a tool that
allows effective, rational and fast screening, assessing and cross-com-
paring of all the different and complex drivers that govern them. An
indicator of the industrial impact of such a system is a series of three
patents taken out by Boeing in recent years. Particularly, the integra-
tion of material modelling in business decision support system, as
proposed in COMPOSELECTOR, will contribute to increase the fraction
of critical decisions informed by modelling and simulation and antici-
pate the reengineering effects in a quantitative way. Furthermore, it is
expected that an improved composite material selection made possible
by the use of the developed business decision platform will allow sub-
stantial improvements in the design and process manufacturing as well.
Indeed, the integration of materials in BDSS can transform the way
engineers understand, and ultimately design and manufacture materials
and will contribute to a better-informed decision-making process in the
early development stages of products, particularly with regards to the
analysis and selection of composite material and their manufacturing
processes. The ability to integrate complex components (composite
material behaviour, process design and LCE for instance) to study their
interactions. Indeed, one of the main features of the BDSS as described
in this paper is the possibility of flexible integration and connection to
external third partly applications. Therefore, offering the possibility to
balance among performances, manufacturing as well as economic and
life cycle aspects.
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