10,011 research outputs found
Adaptive Filtering for Large Space Structures: A Closed-Form Solution
In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system
SFitter: Reconstructing the MSSM Lagrangian from LHC data
Once supersymmetry is found at the LHC, the question arises what are the
fundamental parameters of the Lagrangian. The answer to this question should
thereby not be biased by assumptions on high-scale models. SFitter is a tool
designed for this task. Taking LHC (and possibly ILC) data as input it scans
the TeV-scale MSSM parameter space using its new weighted Markov chain
technique. Using this scan it determines a list of best-fitting parameter
points. Additionally a log-likelihood map is calculated, which can be reduced
to lower-dimensional Frequentist's profile likelihoods or Bayesian probability
maps.Comment: Submitted for the SUSY07 proceedings, 4 pages, LaTeX, 4 eps figure
Di-boson Production beyond NLO QCD and Anomalous Couplings
In these proceedings, we review results for several di-boson production
processes beyond NLO QCD at high transverse momenta using the VBFNLO
Monte-Carlo program together with the LOOPSIM method. Additionally, we show for
the WZ production process how higher order QCD corrections can resemble
anomalous coupling effects.Comment: Conference Proceedings:C15-05-25.
Stellar laboratories. V. The Xe VI ultraviolet spectrum and the xenon abundance in the hot DO-type white dwarf RE0503-289
For the spectral analysis of spectra of hot stars with a high resolution and
high signal-to-noise ratio (S/N), advanced non-local thermodynamic equilibrium
(NLTE) model atmospheres are mandatory. These are strongly dependent on the
reliability of the atomic data that are used for their calculation.
Reliable Xe VI oscillator strengths are used to identify Xe lines in the
ultraviolet spectrum of the DO-type white dwarf RE0503-289 and to determine its
photospheric Xe abundance.
We publish newly calculated oscillator strengths that are based on a recently
measured Xe VI laboratory line spectrum. These strengths were used to consider
their radiative and collisional bound-bound transitions in detail in our NLTE
stellar-atmosphere models to analyze Xe VI lines exhibited in high-resolution
and high S/N UV observations of RE0503-289.
We identify three hitherto unknown Xe VI lines in the ultraviolet spectrum of
RE0503-289 and confirm the previously measured photospheric Xe abundance of
this white dwarf (log Xe = -4.2 +/- 0.6).
Reliable measurements and calculations of atomic data are prerequisite for
stellar-atmosphere modeling. Observed Xe VI line profiles in the ultraviolet
spectrum of the white dwarf RE0503-289 were well reproduced with the newly
calculated Xe VI oscillator strengths.Comment: 3 pages, 4 figure
Star-forming Galactic Contrails at z=3.2 as a Source of Metal Enrichment and Ionizing Radiation
A spectroscopically detected Lyman alpha emitting halo at redshift 3.216 in
the GOODS-N field is found to reside at the convergence of several Lyman alpha
filaments. HST images show that some of the filaments are inhabited by
galaxies. Several of the galaxies in the field have pronounced head-tail
structures, which are partly aligned with each other. The blue colors of most
tails suggest the presence of young stars, with the emission from at least one
of the galaxies apparently dominated by high equivalent width Lyman alpha.
Faint, more diffuse, and similarly elongated, apparently stellar features, can
be seen over an area with a linear extent of at least 90 kpc. The region within
several arcseconds of the brightest galaxy exhibits spatially extended emission
by HeII, NV and various lower ionization metal lines. The gas-dynamical
features present are strongly reminiscent of ram-pressure stripped galaxies,
including evidence for recent star formation in the stripped contrails. Spatial
gradients in the appearance of several galaxies may represent a stream of
galaxies passing from a colder to a hotter intergalactic medium. The stripping
of gas from the in-falling galaxies, in conjunction with the occurrence of star
formation and stellar feedback in the galactic contrails suggests a mechanism
for the metal enrichment of the high redshift intergalactic medium that does
not depend on long-range galactic winds, at the same time opening a path for
the escape of ionizing radiation from galaxies.Comment: 12 pages, 9 figures, submitted to MNRA
EC 11481-2303 - A Peculiar Subdwarf OB Star Revisited
EC 11481-2303 is a peculiar, hot, high-gravity pre-white dwarf. Previous
optical spectroscopy revealed that it is a sdOB star with an effective
temperature (Teff) of 41790 K, a surface gravity log(g)= 5.84, and He/H = 0.014
by number. We present an on-going spectral analysis by means of non-LTE
model-atmosphere techniques based on high-resolution, high-S/N optical
(VLT-UVES) and ultraviolet (FUSE, IUE) observations. We are able to reproduce
the optical and UV observations simultaneously with a chemically homogeneous
NLTE model atmosphere with a significantly higher effective temperature and
lower He abundance (Teff = 55000 K, log (g) = 5.8, and He / H = 0.0025 by
number). While C, N, and O appear less than 0.15 times solar, the iron-group
abundance is strongly enhanced by at least a factor of ten.Comment: 8 pages, 11 figure
Complete spectral energy distribution of the hot, helium-rich white dwarf RX J0503.9-2854
In the line-of-sight toward the DO-type white dwarf RX J0503.9-2854, the
density of the interstellar medium (ISM) is very low, and thus the
contamination of the stellar spectrum almost negligible. This allows us to
identify many metal lines in a wide wavelength range from the extreme
ultraviolet to the near infrared. In previous spectral analyses, many metal
lines in the ultraviolet spectrum of RX J0503.9-2854 have been identified. A
complete line list of observed and identified lines is presented here. We
compared synthetic spectra that had been calculated from model atmospheres in
non-local thermodynamical equilibrium, with observations. In total, we
identified 1272 lines (279 of them were newly assigned) in the wavelength range
from the extreme ultraviolet to the near infrared. 287 lines remain
unidentified. A close inspection of the EUV shows that still no good fit to the
observed shape of the stellar continuum flux can be achieved although He, C, N,
O, Al, Si, P, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Cr, Ni Zn, Ga, Ge, As, Kr, Zr, Mo,
Sn, Xe, and Ba are included in the stellar atmosphere models. There are two
possible reasons for the deviation between observed and synthetic flux in the
EUV. Opacities from hitherto unconsidered elements in the model-atmosphere
calculation may be missing and/or the effective temperature is slightly lower
than previously determined.Comment: 92 pages, 45 figure
- …