9,947 research outputs found

    New intensity and visibility aspects of a double loop neutron interferometer

    Full text link
    Various phase shifters and absorbers can be put into the arms of a double loop neutron interferometer. The mean intensity levels of the forward and diffracted beams behind an empty four plate interferometer of this type have been calculated. It is shown that the intensities in the forward and diffracted direction can be made equal using certain absorbers. In this case the interferometer can be regarded as a 50/50 beam splitter. Furthermore the visibilities of single and double loop interferometers are compared to each other by varying the transmission in the first loop using different absorbers. It can be shown that the visibility becomes exactly 1 using a phase shifter in the second loop. In this case the phase shifter in the second loop must be strongly correlated to the transmission coefficient of the absorber in the first loop. Using such a device homodyne-like measurements of very weak signals should become possible.Comment: 12 pages, 9 figures, accepted for publication in the Journal of Optics B - Quantum and Semiclassical Optic

    3D Photoionisation Modelling of NGC 6302

    Full text link
    We present a three-dimensional photoionisation and dust radiative transfer model of NGC 6302, an extreme, high-excitation planetary nebula. We use the 3D photoionisation code Mocassin} to model the emission from the gas and dust. We have produced a good fit to the optical emission-line spectrum, from which we derived a density distribution for the nebula. A fit to the infrared coronal lines places strong constraints on the properties of the unseen ionising source. We find the best fit comes from using a 220,000 K hydrogen-deficient central star model atmosphere, indicating that the central star of this PN may have undergone a late thermal pulse. We have also fitted the overall shape of the ISO spectrum of NGC 6302 using a dust model with a shallow power-law size distribution and grains up to 1.0 micron in size. To obtain a good fit to the infrared SED the dust must be sufficiently recessed within the circumstellar disk to prevent large amounts of hot dust at short wavelengths, a region where the ISO spectrum is particularly lacking. These and other discoveries are helping to unveil many properties of this extreme object and trace it's evolutionary history.Comment: 8 pages, 4 figures; for the proceedings of "Asymmetric Planetary Nebuale IV," R. L. M. Corradi, A. Manchado, N. Soker ed

    Human capital and entrepreneurial success : a meta-analytical review

    Get PDF
    The study meta-analytically integrates results from three decades of human capital research in entrepreneurship. Based on 70 independent samples (N = 24,733), we found a significant but small relationship between human capital and success (r(c) = .098). We examined theoretically derived moderators of this relationship referring to conceptualizations of human capital, to context, and to measurement of success. The relationship was higher for outcomes of human capital investments (knowledge/skills) than for human capital investments (education/experience), for human capital with high task-relatedness compared to low task-relatedness, for young businesses compared to old businesses, and for the dependent variable size compared to growth or profitability. Findings are relevant for practitioners (lenders, policy makers, educators) and for future research. Our findings show that future research should pursue moderator approaches to study the effects of human capital on success. Further, human capital is most important if it is task-related and if it consists of outcomes of human capital investments rather than human capital investments; this suggests that research should overcome a static view of human capital and should rather investigate the processes of learning, knowledge acquisition, and the transfer of knowledge to entrepreneurial tasks

    First detection of bromine and antimony in hot stars

    Full text link
    Bromine (atomic number Z=35) and antimony (Z=51) are extremely difficult to detect in stars. In very few instances, weak and mostly uncertain identifications of Br I, Br II, and Sb II in relatively cool, chemically peculiar stars were successful. Adopted solar abundance values rely on meteoritic determinations. Here, we announce the first identification of these species in far-ultraviolet spectra of hot stars (with effective temperatures of 49,500-70,000 K), namely in helium-rich (spectral type DO) white dwarfs. We identify the Br VI resonance line at 945.96 A. A previous claim of Br detection based on this line is incorrect because its wavelength position is inaccurate by about 7 A in atomic databases. Taking advantage of precise laboratory measurements, we identify this line as well as two other, subordinate Br VI lines. Antimony is detected by the Sb V resonance doublet at 1104.23/1225.98 A, as well as two subordinate Sb VI lines. A model-atmosphere analysis reveals strongly oversolar Br and Sb abundances that are caused by radiative-levitation dominated atomic diffusion.Comment: Accepted for publication in A&

    Cosmological Conductive/Cooling Fronts as Lyman Alpha Forest Clouds

    Full text link
    We propose a simple model for the origin and evolution of \lya clouds based on cosmological conductive/cooling fronts. In this model the \lya arises in the interfaces between the IGM and cold clouds that could be tentatively identified with protogalaxies. Most of the properties of the \lya absorbers are reproduced with a very restricted number of assumptions. Among these are the correct range of HI column density, cloud sizes and redshift and HI column density distributions for the absorbers. Several predictions and implications of the model are briefly discussed.Comment: 9 pages, plain TeX, 3 figures; ApJ Letters, accepte

    BD-22 3467, a DAO-type star exciting the nebula Abell 35

    Full text link
    Spectral analyses of hot, compact stars with NLTE (non-local thermodynamical equilibrium) model-atmosphere techniques allow the precise determination of photospheric parameters. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Previous spectral analyses of the exciting star of the nebula A 35, BD-22 3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. For the analysis of high-resolution and high-S/N (signal-to-noise) FUV (far ultraviolet, FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. The best agreement with the UV observation of BD-22 3467 is achieved at Teff = 80 +/- 10 kK and log g =7.2 +/- 0.3. While Teff of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90 % of the observed absorption features. The stellar mass is M ~ 0.48 Msun. BD-22 3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf state. This would explain why it is not surrounded by a planetary nebula. However, the star, ionizes the ambient interstellar matter, mimicking a planetary nebula.Comment: 13 pages, 17 figure

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    Fractal geometry of critical Potts clusters

    Full text link
    Numerical simulations on the total mass, the numbers of bonds on the hull, external perimeter, singly connected bonds and gates into large fjords of the Fortuin-Kasteleyn clusters for two-dimensional q-state Potts models at criticality are presented. The data are found consistent with the recently derived corrections-to-scaling theory. However, the approach to the asymptotic region is slow, and the present range of the data does not allow a unique identification of the exact correction exponentsComment: 7 pages, 8 figures, Late
    corecore