66 research outputs found

    Frequency Locked Microtoroid Optical Resonators as a Non-Invasive Tumor Biopsy Alternative

    Get PDF
    Whispering gallery mode optical resonators offer an unusual coupling of rapid response time and ultra-sensitive biological and chemical detection. We have improved the signal to noise ratio of microtoroid optical resonators ∼1000-fold over standard techniques by using laser frequency locking and have applied this to assay tumor progression in mice by sensing the low concentrations of exosomes, shed by tumor cells, in serum samples collected from the animals. Serum samples from normal or experimental mice cause no shift in the resonance wavelength of the microtoroids; however, after using antibodies toward specific tumor markers to sensitize the toroid surface, we detected changes in the resonance frequency of the microtoroid when exposed to the serum of tumor-implanted mice. Serum from control (tumor-free) mice caused no shift. The wavelength shifts observed were 600 times the noise and drift of the sensor, even for a million fold dilution of the serum sample. Analysis of the shifts showed unitary steps of ∼ 0.5 fm, suggesting that the assay may be sensitive enough to detect individual binding events, offering a means to analyze the size of the biomolecules that are binding to the resonator. If validated, this approach offers a non-invasive tumor “biopsy,” exploiting the circulation of blood to collect a sample of tumor surfaces without the need to find or access the tumors

    Preclinical Results of Camptothecin-Polymer Conjugate (IT-101) in Multiple Human Lymphoma Xenograft Models

    Get PDF
    Purpose: Camptothecin (CPT) has potent broad-spectrum antitumor activity by inhibiting type I DNA topoisomerase (DNA topo I). It has not been used clinically because it is water-insoluble and highly toxic. As a result, irinotecan (CPT-11), a water-soluble analogue of CPT, has been developed and used as salvage chemotherapy in patients with relapsed/refractory lymphoma, but with only modest activity. Recently, we have developed a cyclodextrin-based polymer conjugate of 20-(S)-CPT (IT-101). In this study, we evaluated the preclinical antilymphoma efficacy of IT-101 as compared with CPT-11. Experimental Design: We determined an in vitro cytotoxicity of IT-101, CPT-11, and their metabolites against multiple human lymphoma cell lines. In human lymphoma xenografts, the pharmacokinetics, inhibitions of tumor DNA topo I catalytic activity, and antilymphoma activities of these compounds were evaluated. Results: IT-101 and CPT had very high in vitro cytotoxicity against all lymphoma cell lines tested. As compared with CPT-11 and SN-38, IT-101 and CPT had longer release kinetics and significantly inhibit higher tumor DNA topo I catalytic activities. Furthermore, IT-101 showed significantly prolonged the survival of animals bearing s.c. and disseminated human xenografts when compared with CPT-11 at its maximum tolerated dose in mice. Conclusions: The promising present results provide the basis for a phase I clinical trial in patients with relapsed/refractory lymphoma

    Imaging Immune Response In vivo: Cytolytic Action of Genetically Altered T Cells Directed to Glioblastoma Multiforme

    Get PDF
    Purpose: Clinical trials have commenced to evaluate the feasibility of targeting malignant gliomas with genetically engineered CTLs delivered directly to the tumor bed in the central nervous system. The objective of this study is to determine a suite of magnetic resonance imaging (MRI) measurements using an orthotopic xenograft murine model that can noninvasively monitor immunologically mediated tumor regression and reactive changes in the surrounding brain parenchyma. Experimental Design: Our preclinical therapeutic platform is based on CTL genetic modification to express a membrane tethered interleukin-13 (IL-13) cytokine chimeric T-cell antigen receptor. This enables selective binding and signal transduction on encountering the glioma-restricted IL-13 α2 receptor (IL-13Rα2). We used MRI to visualize immune responses following adoptive transfer of IL-13Rα2-specific CD8^+ CTL clones. Results: Based on MRI measurements, several phases following IL-13Rα2-specific T-cell adoptive transfer could be distinguished, all of which correlated well with glioblastoma regression confirmed on histology. The first detectable changes, 24 hours post-treatment, were significantly increased T_2 relaxation times and strongly enhanced signal on T_1-weighted postcontrast images. In the next phase, the apparent diffusion coefficient was significantly increased at 2 and 3 days post-treatment. In the last phase, at day 3 after IL-13Rα2-specific T-cell injection, the volume of hyperintense signal on T_1-weighted postcontrast image was significantly decreased, whereas apparent diffusion coefficient remained elevated. Conclusions: The present study indicates the feasibility of MRI to visualize different phases of immune response when IL-13Rα2-specific CTLs are administered directly to the glioma tumor bed. This will further the aim of better predicting clinical outcome following immunotherapy

    Serial Diffusion MRI to Monitor and Model Treatment Response of the Targeted Nanotherapy CRLX101

    Get PDF
    Purpose: Targeted nanotherapies are being developed to improve tumor drug delivery and enhance therapeutic response. Techniques that can predict response will facilitate clinical translation and may help define optimal treatment strategies. We evaluated the efficacy of diffusion-weighted magnetic resonance imaging to monitor early response to CRLX101 (a cyclodextrin-based polymer particle containing the DNA topoisomerase I inhibitor camptothecin) nanotherapy (formerly IT-101), and explored its potential as a therapeutic response predictor using a mechanistic model of tumor cell proliferation. Experimental Design: Diffusion MRI was serially conducted following CRLX101 administration in a mouse lymphoma model. Apparent diffusion coefficients (ADCs) extracted from the data were used as treatment response biomarkers. Animals treated with irinotecan (CPT-11) and saline were imaged for comparison. ADC data were also input into a mathematical model of tumor growth. Histological analysis using cleaved-caspase 3, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling, Ki-67, and hematoxylin and eosin (H&E) were conducted on tumor samples for correlation with imaging results. Results: CRLX101-treated tumors at day 2, 4, and 7 posttreatment exhibited changes in mean ADC = 16 ± 9%, 24 ± 10%, 49 ± 17%, and size (TV) = −5 ± 3%, −30 ± 4%, and −45 ± 13%, respectively. Both parameters were statistically greater than controls [p(ADC) ≤ 0.02, and p(TV) ≤ 0.01 at day 4 and 7], and noticeably greater than CPT-11–treated tumors (ADC = 5 ± 5%, 14 ± 7%, and 18 ± 6%; TV = −15 ± 5%, −22 ± 13%, and −26 ± 8%). Model-derived parameters for cell proliferation obtained using ADC data distinguished CRLX101-treated tumors from controls (P = 0.02). Conclusions: Temporal changes in ADC specified early CRLX101 treatment response and could be used to model image-derived cell proliferation rates following treatment. Comparisons of targeted and nontargeted treatments highlight the utility of noninvasive imaging and modeling to evaluate, monitor, and predict responses to targeted nanotherapeutics

    Low Dose Focused Ultrasound Induces Enhanced Tumor Accumulation of Natural Killer Cells

    Get PDF
    Natural killer (NK) cells play a vital antitumor role as part of the innate immune system. Efficacy of adoptive transfer of NK cells depends on their ability to recognize and target tumors. We investigated whether low dose focused ultrasound with microbubbles (ldbFUS) could facilitate the targeting and accumulation of NK cells in a mouse xenograft of human colorectal adenocarcinoma (carcinoembryonic antigen (CEA)-expressing LS-174T implanted in NOD.Cg-Prkdc^(scid)Il2rg^(tm1Wjl)/SzJ (NSG) mice) in the presence of an anti-CEA immunocytokine (ICK), hT84.66/M5A-IL-2 (M5A-IL-2). Human NK cells were labeled with an FDA-approved ultra-small superparamagnetic iron oxide particle, ferumoxytol. Simultaneous with the intravenous injection of microbubbles, focused ultrasound was applied to the tumor. In vivo longitudinal magnetic resonance imaging (MRI) identified enhanced accumulation of NK cells in the ensonified tumor, which was validated by endpoint histology. Significant accumulation of NK cells was observed up to 24 hrs at the tumor site when ensonified with 0.50 MPa peak acoustic pressure ldbFUS, whereas tumors treated with at 0.25 MPa showed no detectable NK cell accumulation. These clinically translatable results show that ldbFUS of the tumor mass can potentiate tumor homing of NK cells that can be evaluated non-invasively using MRI

    Matched-Cohort Analysis of Autologous Hematopoietic Cell Transplantation with Radioimmunotherapy versus Total Body Irradiation–Based Conditioning for Poor-Risk Diffuse Large Cell Lymphoma

    Get PDF
    We conducted a matched-cohort analysis of autologous transplant conditioning regimens for diffuse large cell lymphoma in 92 patients treated with either radioimmunotherapy (RIT) or total body irradiation (TBI)–based conditioning regimens. The RIT regimen consisted of 0.4 mCi/kg of 90Y-ibritumomab tiuxetan plus BEAM (BCNU, etoposide, cytarabine, melphalan). The TBI-based regimen combined fractionated TBI at 1200 cGy, with etoposide and cyclophosphamide. Five factors were matched between 46 patient pairs: age at transplant ±5 years, disease status at salvage, number of prior regimens, year of diagnosis ±5 years, and year of transplantation ±5 years. Patients in the TBI group had higher rates of cardiac toxicity and mucositis, whereas Z-BEAM patients had a higher incidence of pulmonary toxicity. Overall survival at 4 years was 81.0% for the Z-BEAM and 52.7% for the TBI group (P = .01). The 4-year cumulative incidence of relapse/progression was 40.4% and 42.1% for Z-BEAM and TBI, respectively (P = .63). Nonrelapse mortality was superior in the Z-BEAM group: 0% compared with 15.8% for TBI at 4 years (P < .01). Our data demonstrate that RIT-based conditioning had a similar relapse incidence to TBI, with lower toxicity, resulting in improved overall survival, particularly in patients with ≥2 prior regimens

    Quantitative, Simultaneous PET/MRI for Intratumoral Imaging with an MRI-Compatible PET Scanner

    Get PDF
    Noninvasive methods are needed to explore the heterogeneous tumor microenvironment and its modulation by therapy. Hybrid PET/MRI systems are being developed for small-animal and clinical use. The advantage of these integrated systems depends on their ability to provide MR images that are spatially coincident with simultaneously acquired PET images, allowing combined functional MRI and PET studies of intratissue heterogeneity. Although much effort has been devoted to developing this new technology, the issue of quantitative and spatial fidelity of PET images from hybrid PET/MRI systems to the tissues imaged has received little attention. Here, we evaluated the ability of a first-generation, small-animal MRI-compatible PET scanner to accurately depict heterogeneous patterns of radiotracer uptake in tumors. Methods: Quantitative imaging characteristics of the MRI-compatible PET (PET/MRI) scanner were evaluated with phantoms using calibration coefficients derived from a mouse-sized linearity phantom. PET performance was compared with a commercial small-animal PET system and autoradiography in tumor-bearing mice. Pixel and structure-based similarity metrics were used to evaluate image concordance among modalities. Feasibility of simultaneous PET/MRI functional imaging of tumors was explored by following ^(64)Cu-labeled antibody uptake in relation to diffusion MRI using cooccurrence matrix analysis. Results: The PET/MRI scanner showed stable and linear response. Activity concentration recovery values (measured and true activity concentration) calculated for 4-mm-diameter rods within linearity and uniform activity rod phantoms were near unity (0.97 ± 0.06 and 1.03 ± 0.03, respectively). Intratumoral uptake patterns for both ^(18)F-FDG and a ^(64)Cu-antibody acquired using the PET/MRI scanner and small-animal PET were highly correlated with autoradiography (r > 0.99) and with each other (r = 0.97 ± 0.01). On the basis of these data, we performed a preliminary study comparing diffusion MRI and radiolabeled antibody uptake patterns over time and visualized movement of antibodies from the vascular space into the tumor mass. Conclusion: The MRI-compatible PET scanner provided tumor images that were quantitatively accurate and spatially concordant with autoradiography and the small-animal PET examination. Cooccurrence matrix approaches enabled effective analysis of multimodal image sets. These observations confirm the ability of the current simultaneous PET/MRI system to provide accurate observations of intratumoral function and serve as a benchmark for future evaluations of hybrid instrumentation

    Understanding Newton's Concepts of Circular Motion

    No full text
    corecore