4 research outputs found

    How to meet new global targets in the offshore realms: biophysical guidelines for offshore networks of no-take marine protected areas

    Get PDF
    Networks of no-take marine protected areas (MPAs), where all extractive activities are prohibited, are the most effective tool to directly protect marine ecosystems from destructive and unsustainable human activities. No-take MPAs and MPA networks have been globally implemented in coastal seas, and their success has been significantly enhanced where science-based biophysical guidelines have informed their design. Increasingly, as human pressure on marine ecosystems is expanding further offshore, governments are establishing offshore MPAs—some very large—or MPA networks. Globally, there are growing calls from scientists, non-government organisations, and national governments to set global conservation targets upwards of 30%. Given that most of the ocean is found either in the high seas or offshore within national Exclusive Economic Zones, large offshore MPAs or networks of MPAs must be a major component of these global targets for ocean protection. However, without adequate design, these offshore MPAs risk being placed to minimise conflict with economic interests, rather than to maximise biodiversity protection. This paper describes detailed biophysical guidelines that managers can use to design effective networks of no-take MPAs in offshore environments. We conducted a systematic review of existing biophysical design guidelines for networks of MPAs in coastal seas, and found consistent elements relating to size, shape, connectivity, timeframes, and representation of biophysical features. However, few of the guidelines are tailored to offshore environments, and few of the large offshore MPAs currently in place were designed systematically. We discuss how the common inshore design guidelines should be revised to be responsive to the characteristics of offshore ecosystems, including giving consideration of issues of scale, data availability, and uncertainty. We propose 10 biophysical guidelines that can be used to systematically design offshore networks of MPAs which will also contribute to the global goal of at least 30% protection globally. Finally, we offer three priority guidelines that reflect the unique conservation needs of offshore ecosystems: emphasising the need for larger MPAs; maximising the inclusion of special features that are known and mapped; and representing minimum percentages of habitats, or, where mapped, bioregions. Ultimately, MPA guidelines need to be embedded within an adaptive management framework, and have the flexibility to respond to emerging knowledge and new challenges

    An Improved Reconstruction of Total Marine Fisheries Catches for the New Hebrides and the Republic of Vanuatu, 1950–2014

    No full text
    International audienceFor many small island nations, fisheries provide residents with both food security and economic stability. However, in order to create effective and sustainable fisheries policies and management that will ensure a growing population can prosper, policy makers need to know what is being fished and how much is fished. Vanuatu, the smallest country in Melanesia, has a declared and claimed Exclusive Economic Zone (EEZ) of over 820,000 km2 and fisheries resources play a large part in the food security and economic stability of this country. This reconstruction of the total marine fisheries catch of Vanuatu for 1950–2014 faced major data gaps. It showed that the reconstructed total catches of nearly 1.4 million tonnes (metric tons) 40% higher than the 977,997 tonnes reported by the Food and Agriculture Organization (FAO) on behalf of Vanuatu for the same period. However, if large-scale industrial catches are excluded, the reconstructed small-scale fisheries catches (~270,000 tonnes) were over 200% higher than the 114,862 tonnes of reported catch that were assumed to represent the small-scale sector in FAO data. Subsistence catches made up almost 93% of small-scale catches, followed by artisanal and recreational catches with ~7 and <1%, respectively. By continuously improving the fisheries data of Vanuatu for both the past and the present, policy makers, stakeholders, and fishers can make better decisions that will maintain the benefits of marine fishery resources

    How to meet new global targets in the offshore realms: biophysical guidelines for offshore networks of no-take marine protected areas

    No full text
    Networks of no-take marine protected areas (MPAs), where all extractive activities are prohibited, are the most effective tool to directly protect marine ecosystems from destructive and unsustainable human activities. No-take MPAs and MPA networks have been globally implemented in coastal seas, and their success has been significantly enhanced where science-based biophysical guidelines have informed their design. Increasingly, as human pressure on marine ecosystems is expanding further offshore, governments are establishing offshore MPAs—some very large—or MPA networks. Globally, there are growing calls from scientists, non-government organisations, and national governments to set global conservation targets upwards of 30%. Given that most of the ocean is found either in the high seas or offshore within national Exclusive Economic Zones, large offshore MPAs or networks of MPAs must be a major component of these global targets for ocean protection. However, without adequate design, these offshore MPAs risk being placed to minimise conflict with economic interests, rather than to maximise biodiversity protection. This paper describes detailed biophysical guidelines that managers can use to design effective networks of no-take MPAs in offshore environments. We conducted a systematic review of existing biophysical design guidelines for networks of MPAs in coastal seas, and found consistent elements relating to size, shape, connectivity, timeframes, and representation of biophysical features. However, few of the guidelines are tailored to offshore environments, and few of the large offshore MPAs currently in place were designed systematically. We discuss how the common inshore design guidelines should be revised to be responsive to the characteristics of offshore ecosystems, including giving consideration of issues of scale, data availability, and uncertainty. We propose 10 biophysical guidelines that can be used to systematically design offshore networks of MPAs which will also contribute to the global goal of at least 30% protection globally. Finally, we offer three priority guidelines that reflect the unique conservation needs of offshore ecosystems: emphasising the need for larger MPAs; maximising the inclusion of special features that are known and mapped; and representing minimum percentages of habitats, or, where mapped, bioregions. Ultimately, MPA guidelines need to be embedded within an adaptive management framework, and have the flexibility to respond to emerging knowledge and new challenges

    Improving community-based fisheries management in Pacific island countries

    No full text
    Inshore fisheries are central to the rural economies and food supply of Pacific Island Countries (PICs), supplying food and serving as one of the few sources of cash for rural people. These fisheries are crucial elements in filling the shortfall in fish supply predicted to confront many PICs in the coming decades. No other production sector can fill the shortfall in supply in the medium term so securing a sustainable supply of fish from coastal fisheries is crucial
    corecore