37 research outputs found

    A Review of Educational Balance and its Relationship to the Daily Schedule in Eighteen Seventh-day Adventist Residence Academies in the United States

    Get PDF
    Problem. Within the time constraints of the 24-hour day and the sevenday week, and under the pressure of the increased number of units to be earned before graduation from Seventh-day Adventist (SDA) residence academies, it was doubtful that students were experiencing educational balance. The number of and time for activities in which a student could be engaged, plus the content and emphasis on daily functions, were studied and reported under five areas of educational balance: academic achievement, vocational and professional interests, social growth, physical activities, and religious experience. Method. Representing grades ten, eleven, and twelve in 18 out of 36 SDA residence academies in the Unifed States, 1,997 students completed a pilot-tested questionnaire consisting of 99 items; 55 administrators from these schools selected time provisions for 27 student activities; and the principals completed a short questionnaire designed to give demographic information for their schools. Responses from students were scored using a panel-prescribed weighting schedule and percentages calculated for each reply. These scores were used as possible indicators of educational balance. Results. In academic achievement, social growth, and religious experience the students rated above the mean ideal expectancy for educational balance. In physical activities the students rated slightly above this mean, but in vocational and professional interests the rating was slightly below the mean ideal expectancy. Time provisions for daily student activities exceeded the 24-hour day time limit, a constraint that had to be removed to insure educational balance. To accomplish this goal seven of the 24 total activities were placed into a variable category to be set by advisors, counselors, and work coordinators, according to individual student academic and work needs. Conclusions. Teachers were perhaps responsible for requiring their students to think, the depth depending on the students; for allowing, as opposed to requiring, their students to get everything done on time; and for encouraging temperance and good posture. Students chose to pay tithe and to make prayer a part of their daily life, two actions probably reinforced by tangible results promised by God. Student desires may have conflicted with time-limited activities such as increased study load and work. Students may have been guilty of time robbery, causing inability to meet with the guidance counselor and lack of devotional time. Time adjustments for student activities were shown to be necessary, complicated, and delicately interrelated to prevent imbalance from occurring

    Soil Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-Steppe Ecosystems

    Get PDF
    Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3-, H2PO4-, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4- was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that demonstrates how soil resources potentially influence the outcome of management treatments

    A Synopsis of Short-Term Response to Alternative Restoration Treatments in Sagebrush-Steppe: The SageSTEP Project

    Get PDF
    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the best chance managers have for arresting woodland expansion and cheatgrass invasion that may accelerate in a future warming climate

    Resilience and Resistance in Sagebrush Ecosystems Are Associated With Seasonal Soil Temperature and Water Availability

    Get PDF
    Invasion and dominance of exotic grasses and increased fire frequency threaten native ecosystems worldwide. In the Great Basin region of the western United States, woody and herbaceous fuel treatments are implemented to decrease the effects of wildfire and increase sagebrush (Artemisia spp.) ecosystem resilience to disturbance and resistance to exotic annual grasses. High cover of the exotic annual cheatgrass (Bromus tectorum) after treatments increases fine fuels, which in turn increases the risk of passing over a biotic threshold to a state of increased wildfire frequency and conversion to cheatgrass dominance. Sagebrush ecosystem resilience to wildfire and resistance to cheatgrass depend on climatic conditions and abundance of perennial herbaceous species that compete with cheatgrass. In this study, we used longer‐term data to evaluate the relationships among soil climate conditions, perennial herbaceous cover, and cheatgrass cover following fuel management treatments across the environmental gradients that characterize sagebrush ecosystems in the Great Basin. We examined the effects of woody and herbaceous fuel treatments on soil temperature, soil water availability (13–30 and 50 cm depths), and native and exotic plant cover on six sagebrush sites lacking piñon (Pinus spp.) or juniper (Juniperus spp.) tree expansion and 11 sagebrush sites with tree expansion. Both prescribed fire and mechanical treatments increased soil water availability on woodland sites and perennial herbaceous cover on some woodland and sagebrush sites. Prescribed fire also slightly increased soil temperatures and especially increased cheatgrass cover compared to no treatment and mechanical treatments on most sites. Non‐metric dimensional scaling ordination and decision tree partition analysis indicated that sites with warmer late springs and warmer and wetter falls had higher cover of cheatgrass. Sites with wetter winters and early springs (March–April) had higher cover of perennial herbs. Our findings suggest that site resistance to cheatgrass after fire and fuel control treatments decreases with a warmer and drier climate. This emphasizes the need for management actions to maintain and enhance perennial herb cover, such as implementing appropriate grazing management, and revegetating sites that have low abundance of perennial herbs in conjunction with fuel control treatments

    Behavioral Corporate Finance: An Updated Survey

    Full text link

    Transition From Sagebrush Steppe to Annual Grass (Bromus tectorum): Influence on Belowground Carbon and Nitrogen

    Get PDF
    Vegetation changes associated with climate shifts and anthropogenic disturbance have major impacts on biogeochemical cycling. Much of the interior western United States currently is dominated by sagebrush (Artemisia tridentata Nutt.) ecosystems. At low to intermediate elevations, sagebrush ecosystems increasingly are influenced by cheatgrass (Bromus tectorum L.) invasion. Little currently is known about the distribution of belowground organic carbon (OC) on these changing landscapes, how annual grass invasion affects OC pools, or the role that nitrogen (N) plays in carbon (C) retention. As part of a Joint Fire Sciences-funded project called the Sagebrush Treatment Evaluation Project (SageSTEP), we quantified the depth distribution of soil OC and N at seven sites experiencing cheatgrass invasion. We sampled plots that retained sagebrush, but represented a continuum of cheatgrass invasion into the understory. Eighty-four soil cores were taken using a mechanically driven diamond-tipped core drill to a depth of 90 cm, or until bedrock or a restrictive layer was encountered. Samples were taken in 15-cm increments, and soil, rocks, and roots were analyzed for OC and total N. We determined that cheatgrass influences the vertical distribution of OC and N within the soil profile and might result in decreased soil OC content below 60 cm. We also found that OC and total N associated with coarse fragments accounted for at least 10% of belowground pools. This emphasizes the need for researchers to quantify nutrients in deep soil horizons and coarse fragments
    corecore