17 research outputs found

    Eyelid microcystic adnexal carcinoma

    Get PDF
    Microcystic adnexal carcinoma is an uncommon cutaneous tumor with multiple synonyms. On cursory microscopic examination, the tumor mimics syringoma and other benign skin adnexal tumors. However, the asymmetric, infiltrative growth pattern clearly sets the lesion apart as carcinoma. The tumor is locally aggressive, with recurrences common, but regional metastases are rare. Histogenesis is controversial. Optimal treatment consists of complete surgical excision with clear surgical margins

    Preface

    No full text

    Evidence that actomyosin cross bridges contribute to ā€œpassiveā€ tension in detrusor smooth muscle

    No full text
    Contraction of detrusor smooth muscle (DSM) at short muscle lengths generates a stiffness component we termed adjustable passive stiffness (APS) that is retained in tissues incubated in a Ca2+-free solution, shifts the DSM length-passive tension curve up and to the left, and is softened by muscle strain and release (strain softened). In the present study, we tested the hypothesis that APS is due to slowly cycling actomyosin cross bridges. APS and active tension produced by the stimulus, KCl, displayed similar length dependencies with identical optimum length values. The myosin II inhibitor blebbistatin relaxed active tension maintained during a KCl-induced contraction and the passive tension maintained during stress-relaxation induced by muscle stretch in a Ca2+-free solution. Passive tension was attributed to tension maintaining rather than tension developing cross bridges because tension did not recover after a rapid 10% stretch and release as it did during a KCl-induced contraction. APS generated by a KCl-induced contraction in intact tissues was preserved in tissues permeabilized with Triton X-100. Blebbistatin and the actin polymerization inhibitor latrunculin-B reduced the degree of APS generated by a KCl-induced contraction. The degree of APS generated by KCl was inhibited to a greater degree than was the peak KCl-induced tension by rhoA kinase and cyclooxygenase inhibitors. These data support the hypothesis that APS is due to slowly cycling actomyosin cross bridges and suggest that cross bridges may play a novel role in DSM that uniquely serves to ensure proper contractile function over an extreme working length range

    Active tension adaptation at a shortened arterial muscle length: inhibition by cytochalasin-D

    No full text
    Unlike the static length-tension curve of striated muscle, airway and urinary bladder smooth muscles display a dynamic length-tension curve. Much less is known about the plasticity of the length-tension curve of vascular smooth muscle. The present study demonstrates that there were significant increases of āˆ¼15% in the phasic phase and āˆ¼10% in the tonic phase of a third KCl-induced contraction of a rabbit femoral artery ring relative to the first contraction after a 20% decrease in length from an optimal muscle length (L0) to 0.8-fold L0. Typically, three repeated contractions were necessary for full length adaptation to occur. The tonic phase of a third KCl-induced contraction was increased by āˆ¼50% after the release of tissues from 1.25-fold to 0.75-fold Lo. The mechanism for this phenomenon did not appear to lie in thick filament regulation because there was no increase in myosin light chain (MLC) phosphorylation to support the increase in tension nor was length adaptation abolished when Ca2+ entry was limited by nifedipine and when Rho kinase (ROCK) was blocked by H-1152. However, length adaptation of both the phasic and tonic phases was abolished when actin polymerization was inhibited through blockade of the plus end of actin by cytochalasin-D. Interestingly, inhibition of actin polymerization when G-actin monomers were sequestered by latrunculin-B increased the phasic phase and had no effect on the tonic phase of contraction during length adaptation. These data suggest that for a given level of cytosolic free Ca2+, active tension in the femoral artery can be sensitized not only by regulation of MLC phosphatase via ROCK and protein kinase C, as has been reported by others, but also by a nonmyosin regulatory mechanism involving actin polymerization. Dysregulation of this form of active tension modulation may provide insight into alterations of large artery stiffness in hypertension
    corecore