4 research outputs found

    Use of viscoelastic polymer sheet as an acoustic control treatment in ceramic tiles to improve sound insertion loss

    Get PDF
    Ceramic tiles are commonly used in non-structural components of a building such as walls, partitions, floors, and roofs. However, due to their high surface hardness and density, ceramic tiles are not an ideal soundproof material. To improve the sound properties, this study introduced the use of a viscoelastic polymer sheet (VPS) as an acoustic control treatment. The VPS was attached to ceramic tiles in 4 different patterns: X, Cross, Corner, and Strip. The ceramic tiles with VPS were tested for the damping property and sound insertion loss (IL) and then compared to the ones without VPS. Results indicated that the attachment of VPS improved the damping property of the ceramic tiles. All tiles with VPS exhibited higher damping loss indexes than the ones with no VPS. The highest damping loss index of 0.017–0.018 was observed in the specimens with VPS in X and Cross patterns. In the case of IL, the performance of all ceramic tiles was indifferent when tested at sound frequencies smaller than 1000Hz. At the sound frequencies above 1000Hz, the best performance was observed in the specimen with VPS in the Cross pattern, followed by X, Strip, and Corner patterns, respectively. This concluded that the use of VPS can improve the damping property of a ceramic tile which also leads to the improvement in sound insertion loss

    Analysis of Train-bridge Dynamic Interaction By Using Finite Element Method and Multibody Co-simulation Model: Case Study of Thailand Airport Rail Link Project

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļœāļĨāļ•āļ­āļšāļŠāļ™āļ­āļ‡āđāļšāļšāļ›āļāļīāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļĢāļ–āđ„āļŸāđāļĨāļ°āļŠāļ°āļžāļēāļ™āļ”āđ‰āļ§āļĒāļĢāļ°āđ€āļšāļĩāļĒāļšāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒ (Finite Element Method) āļĢāđˆāļ§āļĄāļāļąāļšāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļĄāļąāļĨāļ•āļīāļšāļ­āļ”āļĩāđ‰ (Multibody Co-Simulation Method) āđ‚āļ”āļĒāđƒāļŠāđ‰āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļŠāļ°āļžāļēāļ™āđāļĨāļ°āļĢāļ–āđ„āļŸāļˆāļēāļāđ‚āļ„āļĢāļ‡āļāļēāļĢāļĢāļ–āđ„āļŸāļŸāđ‰āļēāđāļ­āļĢāđŒāļžāļ­āļĢāđŒāļ• āđ€āļĢāļĨ āļĨāļīāļ‡āļ„āđŒ āđƒāļ™āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āđƒāļ™āļāļēāļĢāļ§āļīāļˆāļąāļĒāļĒāļąāļ‡āđ„āļ”āđ‰āļ—āļģāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļˆāļĢāļīāļ‡āđ‚āļ”āļĒāļ•āļīāļ”āļ•āļąāđ‰āļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļšāļ™āļŠāļ°āļžāļēāļ™āđ€āļžāļ·āđˆāļ­āļ•āļĢāļ§āļˆāļ§āļąāļ”āļāļēāļĢāļŠāļąāđˆāļ™āļŠāļ°āđ€āļ—āļ·āļ­āļ™āđ€āļĄāļ·āđˆāļ­āļĢāļ–āđ„āļŸāđāļĨāđˆāļ™āļœāđˆāļēāļ™ āļœāļĨāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļˆāļ°āļ–āļđāļāļ™āļģāļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļœāļĨāļˆāļēāļāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒ āļˆāļēāļāļœāļĨāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļžāļšāļ§āđˆāļēāļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āļāļēāļĢāļŠāļąāđˆāļ™āļŠāļ°āđ€āļ—āļ·āļ­āļ™āđāļĨāļ°āļ„āđˆāļēāļāļēāļĢāđāļ­āđˆāļ™āļ•āļąāļ§āļ‚āļ­āļ‡āļŠāļ°āļžāļēāļ™āļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ•āļĢāļ§āļˆāļ§āļąāļ”āļĄāļĩāļ„āļ§āļēāļĄāļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļœāļĨāļĨāļąāļžāļ˜āđŒāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŊ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄ āļžāļšāļ§āđˆāļēāļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļĢāđˆāļ‡āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļšāļ™āļŠāļ°āļžāļēāļ™āļ™āļąāđ‰āļ™āļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ āđ‚āļ”āļĒāļ­āļēāļˆāđ€āļ›āđ‡āļ™āļœāļĨāļĄāļēāļˆāļēāļāļ›āļąāļˆāļˆāļąāļĒāļ­āļ·āđˆāļ™āđ†āđ€āļŠāđˆāļ™ āļ„āļ§āļēāļĄāđ„āļĄāđˆāļŠāļĄāđˆāļģāđ€āļŠāļĄāļ­āļ‚āļ­āļ‡āļœāļīāļ§āļ—āļēāļ‡ (Track Irregularity) āļĢāļ§āļĄāđ„āļ›āļ–āļķāļ‡āļ„āļ§āļēāļĄāļŠāļĄāļšāļđāļĢāļ“āđŒāļ‚āļ­āļ‡āļŠāđˆāļ§āļ™āļ›āļĢāļ°āļāļ­āļšāļ•āđˆāļēāļ‡āđ† āļ‚āļ­āļ‡āļ—āļēāļ‡āļ§āļīāđˆāļ‡ āļœāļĨāļˆāļēāļāļāļēāļĢāļ§āļīāļˆāļąāļĒāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ–āļķāļ‡āđāļ™āļ§āļ—āļēāļ‡āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļĢāļ°āđ€āļšāļĩāļĒāļšāļ§āļīāļ˜āļĩāđ„āļŸāđ„āļ™āļ•āđŒāļ­āļīāļĨāļīāđ€āļĄāļ™āļ•āđŒāļĢāđˆāļ§āļĄāļāļąāļšāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļĄāļąāļĨāļ•āļīāļšāļ­āļ”āļĩāđ‰ āļ—āļĩāđˆāļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ„āļēāļ”āļ„āļ°āđ€āļ™āļœāļĨāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļˆāļēāļāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ›āļāļīāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļĢāļ–āđ„āļŸāđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļŠāļ°āļžāļēāļ™āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļž āđ‚āļ”āļĒāļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļĢāļ°āļšāļšāđƒāļ™āļŠāļ āļēāļ§āļ°āļ­āļ·āđˆāļ™āđ† āđ„āļ”āđ‰āđ€āļŠāđˆāļ™ āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļĢāļ°āļ”āļąāļšāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ‚āļ­āļ‡āļĢāļ–āđ„āļŸ āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āļŠāļ°āļžāļēāļ™ āļ„āļ§āļēāļĄāđ„āļĄāđˆāļŠāļĄāđˆāļģāđ€āļŠāļĄāļ­āļ‚āļ­āļ‡āļœāļīāļ§āļ—āļēāļ‡āđƒāļ™āļĢāļđāļ›āđāļšāļšāļ•āđˆāļēāļ‡āđ† āđ€āļ›āđ‡āļ™āļ•āđ‰āļ™This research aims to analyze the interaction response between trains and bridges by using Finite Element Method (FEM) and Multibody Co-simulation model. The bridges and trains details were obtained from Thailand Airport Rail Link Project. In addition, actual tests were carried out by installing devices on the bridge to measure the vibration as the train passed. The tested results were used for comparison with the results from the mathematical models developed. It was founded that, the results of vibration mode and mid-span deflection from field experiment and numerical simulation are in good agreement. However, the significant differences of the bridge acceleration were found in some range of train speed. Those differences between bridge acceleration results may be caused by the effects of track irregularity and the condition of track components. This research has been shown that the finite element model with multi-body model can be applied for prediction of the behaviors of train-bridge dynamic interaction, effectively. Furthermore, this technique can also be applied to analyze the behaviors of the system in other conditions, such as variation of the train speed, bridge configuration as well as degree of track Irregularity, etc

    Use of viscoelastic polymer sheet as an acoustic control treatment in ceramic tiles to improve sound insertion loss

    No full text
    Ceramic tiles are commonly used in non-structural components of a building such as walls, partitions, floors, and roofs. However, due to their high surface hardness and density, ceramic tiles are not an ideal soundproof material. To improve the sound properties, this study introduced the use of a viscoelastic polymer sheet (VPS) as an acoustic control treatment. The VPS was attached to ceramic tiles in 4 different patterns: X, Cross, Corner, and Strip. The ceramic tiles with VPS were tested for the damping property and sound insertion loss (IL) and then compared to the ones without VPS. Results indicated that the attachment of VPS improved the damping property of the ceramic tiles. All tiles with VPS exhibited higher damping loss indexes than the ones with no VPS. The highest damping loss index of 0.017–0.018 was observed in the specimens with VPS in X and Cross patterns. In the case of IL, the performance of all ceramic tiles was indifferent when tested at sound frequencies smaller than 1000 Hz. At the sound frequencies above 1000 Hz, the best performance was observed in the specimen with VPS in the Cross pattern, followed by X, Strip, and Corner patterns, respectively. This concluded that the use of VPS can improve the damping property of a ceramic tile which also leads to the improvement in sound insertion loss
    corecore