530 research outputs found

    Scalar Non-Luminous Matter in Galaxies

    Get PDF
    As a candidate for dark matter in galaxies, we study an SU(3) triplet of complex scalar fields which are non-minimally coupled to gravity. In the spherically symmetric static spacetime where the flat rotational velocity curves of stars in galaxies can be explained, we find simple solutions of scalar fields with SU(3) global symmetry broken to U(1) X U(1), in an exponential scalar potential, which will be useful in a quintessence model of the late-time acceleration of the Universe.Comment: 6 pages, no figure, LaTex. Submitted to IJMP

    Accelerating Universes with Scaling Dark Matter

    Get PDF
    Friedmann-Robertson-Walker universes with a presently large fraction of the energy density stored in an XX-component with wX<1/3w_X<-1/3, are considered. We find all the critical points of the system for constant equations of state in that range. We consider further several background quantities that can distinguish the models with different wXw_X values. Using a simple toy model with a varying equation of state, we show that even a large variation of wXw_X at small redshifts is very difficult to observe with dL(z)d_L(z) measurements up to z1z\sim 1. Therefore, it will require accurate measurements in the range 1<z<21<z<2 and independent accurate knowledge of Ωm,0\Omega_{m,0} (and/or ΩX,0\Omega_{X,0}) in order to resolve a variable wXw_X from a constant wXw_X.Comment: submitted to IJMPD (uses Latex, 12 pages, 6 Figures) Minor corrections, Figures 4, 6 revised. Conclusions unchange

    Is Cosmology Solved?

    Get PDF
    We have fossil evidence from the thermal background radiation that our universe expanded from a considerably hotter denser state. We have a well defined and testable description of the expansion, the relativistic Friedmann-Lemaitre model. Its observational successes are impressive but I think hardly enough for a convincing scientific case. The lists of observational constraints and free hypotheses within the model have similar lengths. The scorecard on the search for concordant measures of the mass density parameter and the cosmological constant shows that the high density Einstein-de Sitter model is challenged, but that we cannot choose between low density models with and without a cosmological constant. That is, the relativistic model is not strongly overconstrained, the usual test of a mature theory. Work in progress will greatly improve the situation and may at last yield a compelling test. If so, and the relativistic model survives, it will close one line of research in cosmology: we will know the outlines of what happened as our universe expanded and cooled from high density. It will not end research: some of us will occupy ourselves with the details of how galaxies and other large-scale structures came to be the way they are, others with the issue of what our universe was doing before it was expanding. The former is being driven by rapid observational advances. The latter is being driven mainly by theory, but there are hints of observational guidance.Comment: 13 pages, 3 figures. To be published in PASP as part of the proceedings of the Smithsonian debate, Is Cosmology Solved

    Dynamics of a Generalized Cosmological Scalar-Tensor Theory

    Get PDF
    A generalized scalar-tensor theory is investigated whose cosmological term depends on both a scalar field and its time derivative. A correspondence with solutions of five-dimensional Space-Time-Matter theory is noted. Analytic solutions are found for the scale factor, scalar field and cosmological term. Models with free parameters of order unity are consistent with recent observational data and could be relevant to both the dark-matter and cosmological-"constant" problems.Comment: 13 page

    Variational dynamics in open spacetimes

    Get PDF
    We study the effect of non-vanishing surface terms at spatial infinity on the dynamics of a scalar field in an open FLRW spacetime. Starting from the path-integral formulation of quantum field theory we argue that classical physics is described by field configurations which extremize the action functional in the space of field configurations for which the variation of the action is well defined. Since these field configurations are not required to vanish outside a bounded domain, there is generally a non-vanishing contribution of a surface term to the variation of the action. We then investigate whether this surface term has an effect on the dynamics of the action-extremizing field configurations. This question appears to be surprisingly nontrivial in the case of the open FLRW geometry, since surface terms tend to grow as fast as volume terms in the infinite volume limit. We find that surface terms can be important for the dynamics of the field at a classical and at a quantum level, when there are supercurvature perturbations.Comment: 21 pages, Latex, no figure

    Diffusion of ions through some Indian timbers

    Get PDF
    A simple diffusion cell (which can be easily constructed from perspex sheeting) for studying the passage of molecules, ions, gases, vapours and liquids through wood and other membranes is described. The diffusion of ions through some species of Indian timbers under variety of conditions has been studied and the results reported. The results show that the diffusion of ions through wood obeys Fick's law as long as the ion does not react with any constituents of the wood. In other cases there is deviation from this law. The diffusion constant is largest in the axial direction and smallest in the tangential direction. As against other claims, for the species tested, ionic diffusion is higher through sapwood than through heartwood. Temperature increases the rate of diffusion of ions. Diffusion of copper sulphate through cellophane is in conformity with Fick's law and is of the same order as for some timbers

    A conjecture on the origin of dark energy

    Full text link
    The physical origin of holographic dark energy (HDE) is investigated. The main existing explanations, namely the UV/IR connection argument of Cohen et al, Thomas' bulk holography argument, and Ng's spacetime foam argument, are shown to be not satisfactory. A new explanation of the HDE model is then proposed based on the ideas of Thomas and Ng. It is suggested that the dark energy might originate from the quantum fluctuations of spacetime limited by the event horizon of the universe. Several potential problems of the explanation are also discussed.Comment: 11 pages, no figure

    Big Bang Nucleosynthesis Constraints on Primordial Magnetic Fields

    Get PDF
    We reanalyze the effect of magnetic fields in BBN, incorporating several features which were omitted in previous analyses. We find that the effects of coherent magnetic fields on the weak interaction rates and the electron thermodynamic functions (\rhoe, \Pe, and \drhoedt ) are unimportant in comparison to the contribution of the magnetic field energy density in BBN. In consequence the effect of including magnetic fields in BBN is well approximated numerically by treating the additional energy density as effective neutrino number. A conservative upper bound on the primordial magnetic field, parameterized as ζ=2eBrms/(Tν2)\zeta=2eB_{rms}/(T_\nu^2), is ζ2\zeta \le 2 (ρB<0.27ρν\rho_B < 0.27 \rho_\nu). This bound can be stronger than the conventional bound coming from the Faraday rotation measures of distant quasars if the cosmological magnetic field is generated by a causal mechanism.Comment: Latex, 20 pages, 3 uuencoded figures appende

    Magnetohydrodynamics of the Early Universe and the Evolution of Primordial Magnetic Fields

    Get PDF
    We show that the decaying magnetohydrodynamic turbulence leads to a more rapid growth of the correlation length of a primordial magnetic field than that caused by the expansion of the Universe. As an example, we consider the magnetic fields created during the electroweak phase transition. The expansion of the universe alone would yield a correlation length at the present epoch of 1 AU, whereas we find that the correlation length is likely of order 100 AU, and cannot possibly be longer than 10410^4 AU for non-helical fields. If the primordial field is strongly helical, the correlation length can be much larger, but we show that even in this case it cannot exceed 100 pc. All these estimates make it hard to believe that the observed galactic magnetic fields can result from the amplification of seed fields generated at the electroweak phase transition by the standard galactic dynamo.Comment: 15 pages, REVTeX. Added results of numerical simulation, enlarged and revise

    CMB anisotropies due to cosmological magnetosonic waves

    Get PDF
    We study scalar mode perturbations (magnetosonic waves) induced by a helical stochastic cosmological magnetic field and derive analytically the corresponding cosmic microwave background (CMB) temperature and polarization anisotropy angular power spectra. We show that the presence of a stochastic magnetic field, or an homogeneous magnetic field, influences the acoustic oscillation pattern of the CMB anisotropy power spectrum, effectively acting as a reduction of the baryon fraction. We find that the scalar magnetic energy density perturbation contribution to the CMB temperature anisotropy is small compared to the contribution to the CMB EE-polarization anisotropy.Comment: 17 pages, references added, version accepted for publication in Phys. Rev.
    corecore