3,542 research outputs found
Phase resolved PLIF and chemiluminescence for measuring combustion dynamics
Transient behavior of combustion systems has long been a subject of both fundamental and practical concerns. Extreme cases of very rapid changes include the ignition of reacting mixtures and detonation. At the other extreme is a wide range of quasi-steady changes of behavior, for example adjustments of the operating point of a combustion chamber. Between the limiting cases of 'infinitely fast' and 'infinitesimally slow' lie important fundamental problems of time-dependent behavior and a wide array
of practical applications. Among the latter are combustion instabilities and their active control, a primary motivation for the work reported in this paper. Owing to the
complicated chemistry, chemical kinetics and flow dynamics of actual combustion systems, numerical simulations of their behavior remains in a relatively primitive state.
Even as that situation continually improves, it is an essential part of the field that methods of measuring true dynamical behavior be developed to provide results having both fine spatial resolution and accuracy in time. This paper is a progress report of recent research
carried out in the Jet Propulsion Center of the California Institute of Technology
Electron transport in semiconducting carbon nanotubes with hetero-metallic contacts
We present an atomistic self-consistent study of the electronic and transport
properties of semiconducting carbon nanotube in contact with metal electrodes
of different work functions, which shows simultaneous electron and hole doping
inside the nanotube junction through contact-induced charge transfer. We find
that the band lineup in the nanotube bulk region is determined by the effective
work function difference between the nanotube channel and source/drain
electrodes, while electron transmission through the SWNT junction is affected
by the local band structure modulation at the two metal-nanotube interfaces,
leading to an effective decoupling of interface and bulk effects in electron
transport through nanotube junction devices.Comment: Higher quality figures available at http://www.albany.edu/~yx15212
Chiral molecular films as electron polarizers and polarization modulators
Recent experiments on electron scattering through molecular films have shown
that chiral molecules can be efficient sources of polarized electrons even in
the absence of heavy nuclei as source of a strong spin-orbit interaction. We
show that self-assembled monolayers (SAMs) of chiral molecules are strong
electron polarizers due to the high density effect of the monolayers and
explicitly compute the scattering amplitude off a helical molecular model of
carbon atoms. Longitudinal polarization is shown to be the signature of chiral
scattering. For elastic scattering, we find that at least double scattering
events must take place for longitudinal polarization to arise. We predict
energy windows for strong polarization, determined by the energy dependences of
spin-orbit strength and multiple scattering probability. An incoherent
mechanism for polarization amplification is proposed, that increases the
polarization linearly with the number of helix turns, consistent with recent
experiments on DNA SAMs.Comment: 5 Pages, 4 figure
Molecular transport junctions: Current from electronic excitations in the leads
Using a model comprising a 2-level bridge connecting free electron reservoirs
we show that coupling of a molecular bridge to electron-hole excitations in the
leads can markedly effect the source-drain current through a molecular
junction.In some cases, e.g. molecules that exhibit strong charge transfer
transitions, the contribution from electron-hole excitations can exceed the
Landauer elastic current and dominate the observed conduction.Comment: 4 pages, 2 figures, submitted to PR
Equidistribution Rates, Closed String Amplitudes, and the Riemann Hypothesis
We study asymptotic relations connecting unipotent averages of
automorphic forms to their integrals over the moduli space
of principally polarized abelian varieties. We obtain reformulations of the
Riemann hypothesis as a class of problems concerning the computation of the
equidistribution convergence rate in those asymptotic relations. We discuss
applications of our results to closed string amplitudes. Remarkably, the
Riemann hypothesis can be rephrased in terms of ultraviolet relations occurring
in perturbative closed string theory.Comment: 15 page
Antiresonances in Molecular Wires
We present analytic and numerical studies based on Landauer theory of
conductance antiresonances of molecular wires. Our analytic treatment is a
solution of the Lippmann-Schwinger equation for the wire that includes the
effects of the non-orthogonality of the atomic orbitals on different atoms
exactly. The problem of non-orthogonality is treated by solving the transport
problem in a new Hilbert space which is spanned by an orthogonal basis. An
expression is derived for the energies at which antiresonances should occur for
a molecular wire connected to a pair of single-channel 1D leads. From this
expression we identify two distinct mechanisms that give rise to antiresonances
under different circumstances. The exact treatment of non-orthogonality in the
theory is found to be necessary to obtain reliable results. Our numerical
simulations extend this work to multichannel leads and to molecular wires
connected to 3D metallic nanocontacts. They demonstrate that our analytic
results also provide a good description of these more complicated systems
provided that certain well-defined conditions are met. These calculations
suggest that antiresonances should be experimentally observable in the
differential conductance of molecular wires of certain types.Comment: 22 pages, 5 figure
Immobilization of Polyethylene Oxide Surfactants for Non-Fouling Biomaterial Surfaces Using an Argon Glow Discharge Treatment
A non-fouling (protein-resistant) polymer surface is achieved by the covalent immobilization of polyethylene oxide (PEO) surfactants using an inert gas discharge treatment. Treated surfaces have been characterized using electron spectroscopy for chemical analysis (ESCA), static secondary ion mass spectrometry (SSIMS), water contact angle measurement, fibrinogen adsorption, and platelet adhesion. This paper is intended to review our recent work in using this simple surface modification process to obtain wettable polymer surfaces in general, and non-fouling biomaterial surfaces in particular
Cholesterol dependence of HTLV-I infection
Cholesterol-rich plasma membrane microdomains are important for entry of many viruses, including retro-viruses. Depletion of cholesterol with 2-hydroxypropyl-β-cyclodextrin inhibits entry of human T cell leukemia virus type I (HTLV-1) and HTLV-I envelope pseudotyped lentivirus particles. Using a soluble fusion protein of the HTLV-I surface envelope protein with the immunoglobulin Fc domain, the HTLV-I receptor was found to colocalize with a raft-associated marker and to cluster in specific plasma membrane microdomains. Depletion of cholesterol did not alter receptor binding activity, suggesting a requirement for cholesterol in a postbinding virus entry step
- …