491 research outputs found
Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems
Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio
Modeling and Performance of Uplink Cache-Enabled Massive MIMO Heterogeneous Networks
A significant burden on wireless networks is brought by the uploading of user-generated contents to the Internet by means of applications such as social media. To cope with this mobile data tsunami, we develop a novel multiple-input multiple-output (MIMO) network architecture with randomly located base stations (BSs) a large number of antennas employing cache-enabled uplink transmission. In particular, we formulate a scenario, where the users upload their content to their strongest BSs, which are Poisson point process distributed. In addition, the BSs, exploiting the benefits of massive MIMO, upload their contents to the core network by means of a finite-rate backhaul. After proposing the caching policies, where we propose the modified von Mises distribution as the popularity distribution function, we derive the outage probability and the average delivery rate by taking advantage of tools from the deterministic equivalent and stochastic geometry analyses. Numerical results investigate the realistic performance gains of the proposed heterogeneous cache-enabled uplink on the network in terms of cardinal operating parameters. For example, insights regarding the BSs storage size are exposed. Moreover, the impacts of the key parameters such as the file popularity distribution and the target bitrate are investigated. Specifically, the outage probability decreases if the storage size is increased, while the average delivery rate increases. In addition, the concentration parameter, defining the number of files stored at the intermediate nodes (popularity), affects the proposed metrics directly. Furthermore, a higher target rate results in higher outage because fewer users obey this constraint. Also, we demonstrate that a denser network decreases the outage and increases the delivery rate. Hence, the introduction of caching at the uplink of the system design ameliorates the network performance.Peer reviewe
Towards a Realistic Assessment of Multiple Antenna HCNs: Residual Additive Transceiver Hardware Impairments and Channel Aging
Given the critical dependence of broadcast channels by the accuracy of
channel state information at the transmitter (CSIT), we develop a general
downlink model with zero-forcing (ZF) precoding, applied in realistic
heterogeneous cellular systems with multiple antenna base stations (BSs).
Specifically, we take into consideration imperfect CSIT due to pilot
contamination, channel aging due to users relative movement, and unavoidable
residual additive transceiver hardware impairments (RATHIs). Assuming that the
BSs are Poisson distributed, the main contributions focus on the derivations of
the upper bound of the coverage probability and the achievable user rate for
this general model. We show that both the coverage probability and the user
rate are dependent on the imperfect CSIT and RATHIs. More concretely, we
quantify the resultant performance loss of the network due to these effects. We
depict that the uplink RATHIs have equal impact, but the downlink transmit BS
distortion has a greater impact than the receive hardware impairment of the
user. Thus, the transmit BS hardware should be of better quality than user's
receive hardware. Furthermore, we characterise both the coverage probability
and user rate in terms of the time variation of the channel. It is shown that
both of them decrease with increasing user mobility, but after a specific value
of the normalised Doppler shift, they increase again. Actually, the time
variation, following the Jakes autocorrelation function, mirrors this effect on
coverage probability and user rate. Finally, we consider space division
multiple access (SDMA), single user beamforming (SU-BF), and baseline
single-input single-output (SISO) transmission. A comparison among these
schemes reveals that the coverage by means of SU-BF outperforms SDMA in terms
of coverage.Comment: accepted in IEEE TV
Multi-user Communication in Difficult Interference
The co-channel interference (CCI) is one of the major impairments in wireless
communication. CCI typically reduces the reliability of wireless communication
links, but the difficult CCI which is no more or less strong to the desired
signals destroys wireless links despite having myriad of CCI mitigation
methods. It is shown in this paper that M-QAM (Quadrature Amplitude Modulation)
or similar modulation schemes which modulate information both in in-phase and
quadrature-phase are particularly vulnerable to difficult CCI. Despite
well-known shortcomings, it is shown in this paper that M-PAM or similar
schemes that use a single dimension for modulation provides an important mean
for difficult CCI mitigation.Comment: 4 pages, 2 figs and accepted in IEEE ICASSP 2019, Brighton, U
Nuts and Bolts of a Realistic Stochastic Geometric Analysis of mmWave HetNets: Hardware Impairments and Channel Aging
© 2019 IEEE.Motivated by heterogeneous network (HetNet) design in improving coverage and by millimeter-wave (mmWave) transmission offering an abundance of extra spectrum, we present a general analytical framework shedding light on the downlink of realistic mmWave HetNets consisting of K tiers of randomly located base stations. Specifically, we model, by virtue of stochastic geometry tools, the multi-Tier multi-user (MU) multiple-input multiple-output (MIMO) mmWave network degraded by the inevitable residual additive transceiver hardware impairments (RATHIs) and channel aging. Given this setting, we derive the coverage probability and the area spectral efficiency (ASE), and we subsequently evaluate the impact of residual transceiver hardware impairments and channel aging on these metrics. Different path-loss laws for line-of-sight and non-line-of-sight are accounted for the analysis, which are among the distinguishing features of mmWave systems. Among the findings, we show that the RATHIs have a meaningful impact at the high-signal-To-noise-ratio regime, while the transmit additive distortion degrades further than the receive distortion the system performance. Moreover, serving fewer users proves to be preferable, and the more directive the mmWaves are, the higher the ASE becomes.Peer reviewedFinal Accepted Versio
An error analysis of probabilistic fibre tracking methods: average curves optimization
Fibre tractography using diffusion tensor imaging is a promising method for estimating the pathways of white matter tracts in the human brain. The success of fibre tracking methods ultimately depends upon the accuracy of the fibre tracking algorithms and the quality of the data. Uncertainty and its representation have an important role to play in fibre tractography methods to infer useful information from real world noisy diffusion weighted data. Probabilistic fibre tracking approaches have received considerable interest recently for resolving orientational uncertainties. In this study, an average curves approach was used to investigate the impact of SNR and tensor field geometry on the accuracy of three different types of probabilistic tracking algorithms. The accuracy was assessed using simulated data and a range of tract geometries. The average curves representations were employed to represent the optimal fibre path of probabilistic tracking curves. The results are compared with streamline tracking on both simulated and in vivo data
- âŠ