38 research outputs found

    Time and angle of arrival statistics of mobile-tomobile communication channel employing dual annular strip model

    Get PDF
    Abstract: In this paper, a generalized channel model for mobile-to-mobile communication based on the single bounce geometrybased channel modeling techniques has been proposed and analyzed. The model assumes the scatterers to be present in annular strips around the transmitting and the receiving mobile stations. Time of arrival and angle of arrival statistics, being two important channel parameters, have been derived and verified through computer simulations

    MIMO Channel Modeling: A Review

    Get PDF
    Abstract: Channel modeling plays an important role in understanding the behavior and designing of communication systems for different environments. In this paper, we make a brief review of the different channel modeling techniques used to model a multiple-input-multiple-output (MIMO) wireless channel

    Analysis of different combining schemes of two amplify-forward relay branches with individual links experiencing Nakagami fading

    Get PDF
    Abstract: Relay based communication has gained considerable importance in the recent years. In this paper we find the end-toend statistics of a two hop non-regenerative relay branch, each hop being Nakagami-m faded. Closed form expressions for the probability density functions of the signal envelope at the output of a selection combiner and a maximal ratio combiner at the destination node are also derived and analytical formulations are verified through computer simulation. These density functions are useful in evaluating the system performance in terms of bit error rate and outage probability

    Effect of biochar on the physicochemical properties and nitrogen transport of podzolic soil in a boreal ecosystem

    Get PDF
    This study is aimed at investigating the effects of biochar on the physicochemical properties and nitrogen transport in podzolic soils. Soil samples were collected from a research site in Pasadena, Newfoundland, Canada. Experimental treatments consisted of three types of soils {top, E-horizon and mixed soil (topsoil 2: E-horizon soil 1)}, two biochar types (granular and powder) and four biochar application rates (0%, 0.5%, 1% and 2% on a weight basis). A total of 210 most relevant and latest research articles were reviewed. Ten important physicochemical parameters of soil were investigated through a total of 72 experimental units and 54 leaching column experiments. Metadata analysis showed that only a few studies were conducted on the boreal podzolic soil. Soil porosity, field capacity and plant available water increased by 2.8%, 10%, and 12.9%, respectively compared to control when the soil was treated with powdered biochar. Nitrate leaching was reduced by 36% compared to control soil. Granular and powdered biochar were found to be hydrophobic and hydrophilic, respectively. A 2% biochar application rate showed greater impact in terms of improving hydraulic properties and reducing nitrogen leaching. The findings would be helpful to improve agricultural practices in the boreal podzolic soil

    A Comprehensive Study of Real-Time Object Detection Networks Across Multiple Domains: A Survey

    Full text link
    Deep neural network based object detectors are continuously evolving and are used in a multitude of applications, each having its own set of requirements. While safety-critical applications need high accuracy and reliability, low-latency tasks need resource and energy-efficient networks. Real-time detectors, which are a necessity in high-impact real-world applications, are continuously proposed, but they overemphasize the improvements in accuracy and speed while other capabilities such as versatility, robustness, resource and energy efficiency are omitted. A reference benchmark for existing networks does not exist, nor does a standard evaluation guideline for designing new networks, which results in ambiguous and inconsistent comparisons. We, thus, conduct a comprehensive study on multiple real-time detectors (anchor-, keypoint-, and transformer-based) on a wide range of datasets and report results on an extensive set of metrics. We also study the impact of variables such as image size, anchor dimensions, confidence thresholds, and architecture layers on the overall performance. We analyze the robustness of detection networks against distribution shifts, natural corruptions, and adversarial attacks. Also, we provide a calibration analysis to gauge the reliability of the predictions. Finally, to highlight the real-world impact, we conduct two unique case studies, on autonomous driving and healthcare applications. To further gauge the capability of networks in critical real-time applications, we report the performance after deploying the detection networks on edge devices. Our extensive empirical study can act as a guideline for the industrial community to make an informed choice on the existing networks. We also hope to inspire the research community towards a new direction in the design and evaluation of networks that focuses on a bigger and holistic overview for a far-reaching impact.Comment: Published in Transactions on Machine Learning Research (TMLR) with Survey Certificatio

    An evaluation of power transfer functions for HDR video compression

    Get PDF
    High dynamic range (HDR) imaging enables the full range of light in a scene to be captured, transmitted and displayed. However, uncompressed 32-bit HDR is four times larger than traditional low dynamic range (LDR) imagery. If HDR is to fulfil its potential for use in live broadcasts and interactive remote gaming, fast, efficient compression is necessary for HDR video to be manageable on existing communications infrastructure. A number of methods have been put forward for HDR video compression. However, these can be relatively complex and frequently require the use of multiple video streams. In this paper, we propose the use of a straightforward Power Transfer Function (PTF) as a practical, computationally fast, HDR video compression solution. The use of PTF is presented and evaluated against four other HDR video compression methods. An objective evaluation shows that PTF exhibits improved quality at a range of bit-rates and, due to its straightforward nature, is highly suited for real-time HDR video applications

    Optimal exposure compression for high dynamic range content

    Get PDF
    High dynamic range (HDR) imaging has become one of the foremost imaging methods capable of capturing and displaying the full range of lighting perceived by the human visual system in the real world. A number of HDR compression methods for both images and video have been developed to handle HDR data, but none of them has yet been adopted as the method of choice. In particular, the backwards-compatible methods that always maintain a stream/image that allow part of the content to be viewed on conventional displays make use of tone mapping operators which were developed to view HDR images on traditional displays. There are a large number of tone mappers, none of which is considered the best as the images produced could be deemed subjective. This work presents an alternative to tone mapping-based HDR content compression by identifying a single exposure that can reproduce the most information from the original HDR image. This single exposure can be adapted to fit within the bit depth of any traditional encoder. Any additional information that may be lost is stored as a residual. Results demonstrate quality is maintained as well, and better, than other traditional methods. Furthermore, the presented method is backwards-compatible, straightforward to implement, fast and does not require choosing tone mappers or settings

    A study on user preference of high dynamic range over low dynamic range video

    Get PDF
    The increased interest in High Dynamic Range (HDR) video over existing Low Dynamic Range (LDR) video during the last decade or so was primarily due to its inherent capability to capture, store and display the full range of real-world lighting visible to the human eye with increased precision. This has led to an inherent assumption that HDR video would be preferable by the end-user over LDR video due to the more immersive and realistic visual experience provided by HDR. This assumption has led to a considerable body of research into efficient capture, processing, storage and display of HDR video. Although, this is beneficial for scientific research and industrial purposes, very little research has been conducted in order to test the veracity of this assumption. In this paper, we conduct two subjective studies by means of a ranking and a rating based experiment where 60 participants in total, 30 in each experiment, were tasked to rank and rate several reference HDR video scenes along with three mapped LDR versions of each scene on an HDR display, in order of their viewing preference. Results suggest that given the option, end-users prefer the HDR representation of the scene over its LDR counterpart

    Backward compatible object detection using HDR image content

    Get PDF
    Convolution Neural Network (CNN)-based object detection models have achieved unprecedented accuracy in challenging detection tasks. However, existing detection models (detection heads) trained on 8-bits/pixel/channel low dynamic range (LDR) images are unable to detect relevant objects under lighting conditions where a portion of the image is either under-exposed or over-exposed. Although this issue can be addressed by introducing High Dynamic Range (HDR) content and training existing detection heads on HDR content, there are several major challenges, such as the lack of real-life annotated HDR dataset(s) and extensive computational resources required for training and the hyper-parameter search. In this paper, we introduce an alternative backwards-compatible methodology to detect objects in challenging lighting conditions using existing CNN-based detection heads. This approach facilitates the use of HDR imaging without the immediate need for creating annotated HDR datasets and the associated expensive retraining procedure. The proposed approach uses HDR imaging to capture relevant details in high contrast scenarios. Subsequently, the scene dynamic range and wider colour gamut are compressed using HDR to LDR mapping techniques such that the salient highlight, shadow, and chroma details are preserved. The mapped LDR image can then be used by existing pre-trained models to extract relevant features required to detect objects in both the under-exposed and over-exposed regions of a scene. In addition, we also conduct an evaluation to study the feasibility of using existing HDR to LDR mapping techniques with existing detection heads trained on standard detection datasets such as PASCAL VOC and MSCOCO. Results show that the images obtained from the mapping techniques are suitable for object detection, and some of them can significantly outperform traditional LDR images

    Uniform Color Space-Based High Dynamic Range Video Compression

    Get PDF
    © 1991-2012 IEEE. Recently, there has been a significant progress in the research and development of the high dynamic range (HDR) video technology and the state-of-the-art video pipelines are able to offer a higher bit depth support to capture, store, encode, and display HDR video content. In this paper, we introduce a novel HDR video compression algorithm, which uses a perceptually uniform color opponent space, a novel perceptual transfer function to encode the dynamic range of the scene, and a novel error minimization scheme for accurate chroma reproduction. The proposed algorithm was objectively and subjectively evaluated against four state-of-the-art algorithms. The objective evaluation was conducted across a set of 39 HDR video sequences, using the latest x265 10-bit video codec along with several perceptual and structural quality assessment metrics at 11 different quality levels. Furthermore, a rating-based subjective evaluation ( n=40n=40 ) was conducted with six sequences at two different output bitrates. Results suggest that the proposed algorithm exhibits the lowest coding error amongst the five algorithms evaluated. Additionally, the rate-distortion characteristics suggest that the proposed algorithm outperforms the existing state-of-the-art at bitrates ≥ 0.4 bits/pixel
    corecore