6 research outputs found

    Optimasi Multi Objektif Sistem Pendingin pada Ruang Penyimpanan Bahan Bakar Nuklir Bekas Tipe Vault

    Full text link
    Pada penelitian ini dilakukan analisis potensi optimasi pada sistem pengkondisian udara (chiller) untuk mengatur temperatur ruang penyimpanan sementara bahan bakar nuklir bekas tipe kering Vault. Analisis optimasi yang dilakukan meliputi optimasi total exergy destruction dari keseluruhan sistem chiller sekaligus total product component and energy cost (multi objective optimization). Dari hasil optimasi didapatkan nilai decision variables (condensing- and evaporating temperature, sub cooling- and super heating temperature, cooling tower water inlet- and outlet temperature) yang optimal untuk masing-masing skenario optimasi yaitu optimal secara termodinamika (minimal exergy destruction), optimal secara ekonomi (minimal component and energy cost) dan optimal secara termodinamika sekaligus juga ekonomi. Dari nilai optimum decision variables didapatkan equivalent cooling cost (biaya pendinginan yang diperlukan tiap kWh) 803.17 (Rp/kWh) untuk economic optimized, 832.78 (Rp/kWh) untuk thermodynamic optimized dan 811.04 (Rp/kWh) untuk multi objective optimized. Nilai-nilai tersebut lebih baik dibanding nilai pada kondisi base case (kondisi tidak teroptimasi) yaitu sebesar 847.69 (Rp/kWh)

    Pengaruh Perisai Radiasi pada Penyimpanan Kering Bahan Bakar Nuklir Bekas untuk Reaktor Daya Eksperimental

    Full text link
    PENGARUH PERISAI RADIASI PADA PENYIMPANAN KERING BAHAN BAKAR NUKLIR BEKAS UNTUK REAKTOR DAYA EKSPERIMENTAL Di masa mendatang, Badan Tenaga Nuklir Nasional (BATAN) berencana membangun Reaktor Daya Eksperimental (RDE) dengan daya termal 10 MW. RDE merupakan merupakan reaktor suhu tinggi dengan bahan bakar berupa pebble yang teknologinya mirip dengan reaktor HTR-10. Dalam operasional RDE hal yang perlu diperhatikan adalah pengelolaan Bahan Bakar Nuklir Bekas (BBNB). Oleh karena itu, teknologi pengelolaan BBNB HTR-10 dapat digunakan sebagai acuan dalam pengelolaan BBNB reaktor RDE. Pengelolaan BBNB reaktor HTR-10 disimpan dalam tangki penyimpanan dengan sistem kering. Telah dilakukan perhitungan laju dosis pada tangki penyimpanan BBNB di gedung reaktor dan interim storage menggunakan Monte Carlo N-Particle 5 (MCNP-5). Hasil perhitungan laju dosis pada tangki penyimpanan dengan berbagai ketebalan timbal (Pb) berkisar 11,7 – 2,560 x 106 µSv/jam dan 813,06 – 7,146 x 106 µSv/jam masing-masing pada gedung reaktor dan interim storage. Hal ini menunjukkan bahwa ketebalan Pb pada tangki penyimpanan tidak memberikan pengaruh yang signifikan dalam penurunan laju dosis baik pada gedung reaktor maupun interim storage. Penurunan laju dosis akan lebih efektif dengan penambahan Pb pada shielding luar tangki penyimpanan BBNB. Hasil perhitungan laju dosis berkisar 2,560 x 106 – 20,32 µSv/jam dan 7,146 x 106 – 105,58 µSv/jam untuk berbagai ketebalan Pb pada shielding luar tangki penyimpanan BBNB masing-masing di gedung reaktor maupun interim storage. Meskipun nilai laju dosis tidak memenuhi syarat Nilai Batas Dosis (NBD) bagi pekerja radiasi dan masyarakat, namun untuk keselamatan pekerja radiasi penanganan BBNB ini dapat diakomodir dengan konsep As Low As Resonably Achievable (ALARA), memperpanjang waktu peluruhan BBNB dan menfungsikan dinding interim storage sebagai shielding

    Current and future strategies for spent nuclear fuel management in Indonesia

    Full text link
    © 2020 The Author(s) Currently, Indonesia has only three nuclear research reactors. However, Indonesia is the world's fourth most populous country. Owing to the enormous size and rapid growth of the population and the limited availability of fossil fuel and renewable energy resources, the construction of new nuclear power plants (NPPs) has been considered. Because of this, the management policies for long-term spent nuclear fuel in Indonesia have become crucial. This paper reviews the current handling and future management strategies for spent nuclear fuel in Indonesia. With a maximum capacity of 1448 spent fuel elements, Indonesia's interim wet storage of spent fuel (ISSF) is designed to store spent nuclear fuel arising from 25 years of reactor operation at maximum power. However, with the existing low-power reactor operation, the ISSF could be utilized for more than 75 years. The potential problem for long-term storage in the ISSF is system, structure, and component (SSC) aging. Continuous planning, operation, monitoring, and maintenance of the SSC in the ISSF have been conducted to ensure safe long-term utilization of the facility. In accordance with the possibility of NPP construction in the future, three possible scenarios may be considered for future nuclear spent fuel management strategies in Indonesia: 1) wet storage - dry storage - disposal; 2) wet storage -repatriation or sending to other countries; and 3) wet storage - moving to wet- or dry storage of NPP candidate - disposal

    Optimization of dry storage for spent fuel from G.A. Siwabessy nuclear research reactor

    Full text link
    © IJTech 2018. This study proposes a method of optimizing the dry storage design for nuclear-spent fuel from the G.A. Siwabessy research reactor at National Nuclear Energy Agency of Indonesia (BATAN). After several years in a spent fuel pool storage (wet storage), nuclear spent fuel is often moved to dry storage. Some advantages of dry storage compared with wet storage are that there is no generation of liquid waste, no need for a complex and expensive purification system, less corrosion concerns and that dry storage is easier to transport if in the future the storage needs to be sent to the another repository or to the final disposal. In both wet and dry storage, the decay heat of spent fuel must be cooled to a safe temperature to prevent cracking of the spent fuel cladding from where hazardous radioactive nuclides could be released and harm humans and the environment. Three optimization scenarios including the thermal safety single-objective, the economic single-objective and the multi-objective optimizations are obtained. The optimum values of temperature and cost for three optimization scenarios are 317.8K (44.7°C) and 11638.1 USfortheoptimizedsingle−objectivethermalsafetymethod,337.1K(64.0°C)and6345.2US for the optimized single-objective thermal safety method, 337.1K (64.0°C) and 6345.2 US for the optimized single-objective cost method and 325.1K (52.0°C) and 8037.4 US$ for the optimized multi-objective method, respectively

    Studi dan Desain Sistem Pendingin untuk Instalasi Dekontaminasi Elektrolitik Berskala Lab

    Full text link
    STUDI DAN DESAIN SISTEM PENDINGIN UNTUK INSTALASI DEKONTAMINASI ELEKTROLITIK BERSKALA LAB. Telah dilakukan penelitian, kalkulasi serta desain beberapa sistem pendingin untuk instalasi dekontaminasi elektrolitik. Sistem pendingin diperlukan karena efisiensi optimal instalasi bisa dicapai pada temperatur tertentu. Dari kalkulasi dan desain instalasi dekontaminasi elektrolitik berskala laboratorium di PTLR BATAN Serpong diperoleh kapasitas pendingin yang diperlukan instalasi adalah 308,45 Watt, debit masa fluida pendingin (R22) pada temperature evaporasi 20C sebesar 7,45 kg/h, dan debit masa air pendingin pada ΔT = 200C sebesar 12,86 kg/h. Dari berbagai konsep sistem pendingin yang ada, sistem refrigerasi absorpsi dan sistem refrigerasi kompresi uap merupakan sistem pendingin yang sesuai untuk instalasi dekontaminasi elektrolitik. Biaya investasi sistem pendingin absorpsi memang 1,5 hingga 2 kali lebih besar disbanding sistem refrigerasi kompresi uap, namun sistem refrigerasi absorpsi untuk instalasi dekontaminasi elektrolitik berskala 227 liter (dapat mengolah limbah 120 m3 per tahun) mampu menghemat sebesar 13,2 kW tiap satu jam operasi. STUDY AND DESIGN OF COOLING SYSTEM FOR ELECTROTILYTIC DECONTAMINATION INSTALLATION ON LAB SCALE. Some cooling concepts for the electrolytic decontamination plant have been investigated and designed. Cooling system is needed, due to the fact that the optimally efficiency will be reached in the certain anolyte temperature. From the calculation and simulation (based on the lab scale electrolytic decontamination plant in PTLR-BATAN Serpong), it obtained that the cooling capacity of evaporator is 308,45 Watt, the mass flow of refrigerant (R22) at the evaporating temperature of 20C is 7,45 kg/h, the mass flow of chilled water at ΔT = 20 K is 12,86 kg/h. The absorption refrigeration and compression refrigeration system are favorable for the electrolytic decontamination plant. The installed cost for absorption system is 1.5 - 2 times higher than compression system, but the absorption system of 227 litre electrolytic decontamination plant (for 120 m3 waste capacity) could save operating cost of 13,2 kW per hour
    corecore