81 research outputs found

    Sympathetic-transduction in untreated hypertension

    Get PDF
    Transduction of muscle sympathetic nerve activity (MSNA) into vascular tone varies with age and sex. Older normotensive men have reduced sympathetic transduction so that a given level of MSNA causes less arteriole vasoconstriction. Whether sympathetic transduction is altered in hypertension (HTN) is not known. We investigated whether sympathetic transduction is impaired in untreated hypertensive men compared to normotensive controls. Eight untreated hypertensive men and 10 normotensive men (age 50 ± 15 years vs. 45 ± 12 years (mean ± SD); p = 0.19, body mass index (BMI) 24.7 ± 2.7 kg/m(2) vs. 26.0 ± 4.2 kg/m(2); p = 0.21) were recruited. MSNA was recorded from the peroneal nerve using microneurography; beat-to-beat blood pressure (BP; Finapres) and heart rate (ECG) were recorded simultaneously at rest for 10 min. Sympathetic-transduction was quantified using a previously described method. The relationship between MSNA burst area and subsequent diastolic BP was measured for each participant with the slope of the regression indicating sympathetic transduction. MSNA was higher in the hypertensive group compared to normotensives (73 ± 17 bursts/100 heartbeats vs. 49 ± 19 bursts/100 heart bursts; p = 0.007). Sympathetic-transduction was lower in the hypertensive versus normotensive group (0.04%/mmHg/s vs. 0.11%/mmHg/s, respectively; R = 0.622; p = 0.006). In summary, hypertensive men had lower sympathetic transduction compared to normotensive individuals suggesting that higher levels of MSNA are needed to cause the same level of vasoconstrictor tone

    Is High Blood Pressure Self-Protection for the Brain?

    Get PDF
    Rationale: Data from animal models of hypertension indicate that high blood pressure may develop as a vital mechanism to maintain adequate blood flow to the brain. We propose that congenital vascular abnormalities of the posterior cerebral circulation and cerebral hypoperfusion could partially explain the etiology of essential hypertension, which remains enigmatic in 95% of patients. Objective: To evaluate the role of the cerebral circulation in the pathophysiology of hypertension. Methods and Results: We completed a series of retrospective and mechanistic case-control magnetic resonance imaging and physiological studies, in normotensive and hypertensive humans (n=259). Interestingly, in humans with hypertension, we report a higher prevalence of congenital cerebrovascular variants; vertebral artery hypoplasia and an incomplete posterior circle of Willis, which were coupled with increased cerebral vascular resistance, reduced cerebral blood flow and a higher incidence of lacunar type infarcts. Causally, cerebral vascular resistance was elevated before the onset of hypertension and elevated sympathetic nerve activity (n=126). Interestingly, untreated hypertensive patients (n=20) had a cerebral blood flow similar to age-matched controls (n=28). However, participants receiving anti-hypertensive therapy (with blood pressure controlled below target levels) had reduced cerebral perfusion (n=19). Finally, elevated cerebral vascular resistance was a predictor of hypertension suggesting it may be a novel prognostic and/or diagnostic marker (n=126). < Conclusions: Our data indicate that congenital cerebrovascular variants in the posterior circulation and the associated cerebral hypoperfusion may be a factor in triggering hypertension. Therefore lowering blood pressure may worsen cerebral perfusion in susceptible individuals

    The relationship between left ventricular wall thickness, myocardial shortening and ejection fraction in hypertensive heart disease:insights from cardiac magnetic resonance: LVH independently augments EF in hypertension

    Get PDF
    Hypertensive heart disease is often associated with a preserved left ventricular ejection fraction despite impaired myocardial shortening. The authors investigated this paradox in 55 hypertensive patients (52±13 years, 58% male) and 32 age‐ and sex‐matched normotensive control patients (49±11 years, 56% male) who underwent cardiac magnetic resonance imaging at 1.5T. Long‐axis shortening (R=0.62), midwall fractional shortening (R=0.68), and radial strain (R=0.48) all decreased (P<.001) as end‐diastolic wall thickness increased. However, absolute wall thickening (defined as end‐systolic minus end‐diastolic wall thickness) was maintained, despite the reduced myocardial shortening. Absolute wall thickening correlated with ejection fraction (R=0.70, P<.0001). In multiple linear regression analysis, increasing wall thickness by 1 mm independently increased ejection fraction by 3.43 percentage points (adjusted β‐coefficient: 3.43 [2.60–4.26], P<.0001). Increasing end‐diastolic wall thickness augments ejection fraction through preservation of absolute wall thickening. Left ventricular ejection fraction should not be used in patients with hypertensive heart disease without correction for degree of hypertrophy
    corecore