27 research outputs found
Retrospective Evaluation of the Role of Gemcitabine-Docetaxel in Well-Differentiated and Dedifferentiated Liposarcoma
OBJECTIVE: Well-differentiated (WDLPS) and dedifferentiated liposarcoma (DDLPS) account for the majority of liposarcomas. Although gemcitabine-docetaxel is used as second-line treatment in soft tissue sarcomas, its efficacy in WDLPS/DDLPS is not established. This study retrospectively analyzed the efficacy of gemcitabine regimens in WDLPS/DDLPS.
METHODS: All patients with WDLPS or DDLPS who received gemcitabine-based chemotherapy at our institution between September 2002 and January 2021 were included. Response was evaluated by an independent radiologist using RECIST 1.1. The Kaplan-Meier method was used to estimate distributions of survival outcomes and log-rank tests were used to compare survival outcomes between subgroups.
RESULTS: Sixty-five WDLPS/DDLPS patients were included. Seven patients (10.8%) received a gemcitabine-based regimen more than once, totaling 72 treatments. The median age at the start of treatment was 66 years (range 32-80 years). Sixty-five (90.3%) regimens were gemcitabine-docetaxel, and 7 (9.7%) were gemcitabine alone. Majorities of treatments were for disease that was recurrent/metastatic (86.1%), was abdominal/retroperitoneal (83.3%), and had DDLPS components (88.9%), while 25.0% of treatments were for multifocal disease. The overall response rate was 9.7% (7/72). All responses were in patients with documented DDLPS. The median time to progression was 9.2 months (95% CI 5.3-12.3 months). The median overall survival from the start of therapy was 18.8 months (95% CI 13.1-32.4 months).
CONCLUSION: Gemcitabine-docetaxel is an efficacious second-line treatment for DDLPS. Though cross study comparisons are not advisable, response to gemcitabine-docetaxel compares favorably to current standard options trabectedin and eribulin. This combination is a valid comparator arm for future second-line trials in DDLPS
High-Grade Pleomorphic Sarcomas Treated with Immune Checkpoint Blockade: The MD Anderson Cancer Center Experience
BACKGROUND: Undifferentiated pleomorphic sarcomas (UPSs) are amongst the most common subtypes of soft-tissue sarcomas. Few real-world data on the use of immune checkpoint blockade (ICB) in UPS patients and other high-grade pleomorphic STS patients are available.
PURPOSE: The purpose of our study is to describe the efficacy and toxicity of ICB in patients with advanced UPSs and other high-grade pleomorphic sarcomas treated at our institution.
METHODS: This is a retrospective, observational study of all patients with metastatic high-grade pleomorphic sarcomas treated with FDA-approved ICB at MD Anderson Cancer Center between 1 January 2015 and 1 January 2023. Patients included in trials for which results are not yet published were excluded.
RESULTS: Thirty-six patients with advanced/metastatic pleomorphic sarcomas were included. The median age was 52 years. A total of 26 patients (72%) had UPSs and 10 patients (28%) had other high-grade pleomorphic sarcomas. The median follow-up time was 8.8 months. The median PFS was 2.9 months. The 3-month PFS and 6-month PFS were 46% and 32%, respectively. The median OS was 12.9 months. The 12-month OS and 24-month OS were 53% and 29%, respectively. The best response, previous RT, and type of ICB treatment were significantly and independently associated with shorter PFS (
CONCLUSIONS: Real-world retrospective data are consistent with the published literature, with a promising 6-month PFS of 32%. Partial or stable responders to ICB treatment have significantly improved PFS compared to progressors
Hypofractionated, 3-Week, Preoperative Radiotherapy for Patients With Soft Tissue Sarcomas (Hyport-Sts): A Single-Centre, Open-Label, Single-Arm, Phase 2 Trial
BACKGROUND: The standard preoperative radiotherapy regimen of 50 Gy delivered in 25 fractions for 5 weeks for soft tissue sarcomas results in excellent local control, with major wound complications occurring in approximately 35% of patients. We aimed to investigate the safety of a moderately hypofractionated, shorter regimen of radiotherapy, which could be more convenient for patients.
METHODS: This single-centre, open-label, single-arm, phase 2 trial (HYPORT-STS) was done at a single tertiary cancer care centre (MD Anderson Cancer Center, Houston, TX, USA). We administered preoperative radiotherapy to a dose of 42·75 Gy in 15 fractions of 2·85 Gy/day for 3 weeks (five fractions per week) to adults (aged ≥18 years) with non-metastatic soft tissue sarcomas of the extremities or superficial trunk and an Eastern Cooperative Oncology Group performance status of 0-3. The primary endpoint was a major wound complication occurring within 120 days of surgery. Major wound complications were defined as those requiring a secondary operation, or operations, under general or regional anaesthesia for wound treatment; readmission to the hospital for wound care; invasive procedures for wound care; deep wound packing to an area of wound measuring at least 2 cm in length; prolonged dressing changes; repeat surgery for revision of a split thickness skin graft; or wet dressings for longer than 4 weeks. We analysed our primary outcome and safety in all patients who enrolled. We monitored safety using a Bayesian, one-arm, time-to-event stopping rule simulator comparing the rate of major wound complications at 120 days post-surgery among study participants with the historical rate of 35%. This trial is registered with ClinicalTrials.gov, NCT03819985, recruitment is complete, and follow-up continues.
FINDINGS: Between Dec 18, 2018, and Jan 6, 2021, we assessed 157 patients for eligibility, of whom 120 were enrolled and received hypofractionated preoperative radiotherapy. At no time did the stopping rule computation indicate that the trial should be stopped early for lack of safety. Median postoperative follow-up was 24 months (IQR 17-30). Of 120 patients, 37 (31%, 95% CI 24-40) developed a major wound complication at a median time of 37 days (IQR 25-59) after surgery. No patient had acute radiation toxicity (during radiotherapy or within 4 weeks of the radiotherapy end date) of grade 3 or worse (Common Terminology Criteria for Adverse Events [CTCAE] version 4.0) or an on-treatment serious adverse event. Four (3%) of 115 patients had late radiation toxicity (≥6 months post-surgery) of at least grade 3 (CTCAE or Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer Late Radiation Morbidity Scoring Scheme): femur fractures (n=2), lymphoedema (n=1), and skin ulceration (n=1). There were no treatment-related deaths.
INTERPRETATION: Moderately hypofractionated preoperative radiotherapy delivered to patients with soft tissue sarcomas was safe and could therefore be a more convenient alternative to conventionally fractionated radiotherapy. Patients can be counselled about these results and potentially offered this regimen, particularly if it facilitates care at a sarcoma specialty centre. Results on long-term oncological, late toxicity, and functional outcomes are awaited.
FUNDING: The National Cancer Institute
The Immune Landscape of Undifferentiated Pleomorphic Sarcoma
INTRODUCTION: Undifferentiated pleomorphic sarcoma (UPS) can be associated with a relatively dense immune infiltration. Immune checkpoint inhibitors (anti-PD1, anti-PDL1, and anti-CTLA4) are effective in 20% of UPS patients. We characterize the immune microenvironment of UPS and its association with oncologic outcomes.
MATERIAL AND METHODS: Surgically resected UPS samples were stained by immunohistochemistry (IHC) for the following: tumor-associated immune cells (CD3, CD8, CD163, CD20), immune checkpoints (stimulatory: OX40, ICOS; inhibitory: PD-L1, LAG3, IDO1, PD1), and the adenosine pathway (CD73, CD39). Sections were reviewed for the presence of lymphoid aggregates (LA). Clinical data were retrospectively obtained for all samples. The Wilcoxon rank-sum and Kruskal-Wallis tests were used to compare distributions. Correlations between biomarkers were measured by Spearman correlation. Univariate and multivariate Cox models were used to identify biomarkers associated with overall survival (OS) and disease-free survival (DFS). Unsupervised clustering was performed, and Kaplan-Meier curves and log-rank tests used for comparison of OS and DFS between immune clusters.
RESULTS: Samples analyzed (n=105) included 46 primary tumors, 34 local recurrences, and 25 metastases. LA were found in 23% (n=10/43), 17% (n=4/24), and 30% (n=7/23) of primary, recurrent, and metastatic samples, respectively. In primary UPS, CD73 expression was significantly higher after preoperative radiation therapy (p=0.009). CD39 expression was significantly correlated with PD1 expression (primary: p=0.002, recurrent: p=0.004, metastatic: p=0.001), PD-L1 expression (primary: p=0.009), and CD3+ cell densities (primary: p=0.016, recurrent: p=0.043, metastatic: p=0.028). In recurrent tumors, there was a strong correlation between CD39 and CD73 (p=0.015), and both were also correlated with CD163+ cell densities (CD39 p=0.013; CD73 p\u3c0.001). In multivariate analyses, higher densities of CD3+ and CD8+ cells (Cox Hazard Ratio [HR]=0.33; p=0.010) were independently associated with OS (CD3+, HR=0.19, p\u3c0.001; CD8+, HR= 0.33, p=0.010) and DFS (CD3+, HR=0.34, p=0.018; CD8+, HR=0.34, p= 0.014). Unsupervised clustering of IHC values revealed three immunologically distinct clusters: immune high, intermediate, and low. In primary tumors, these clusters were significantly associated with OS (log-rank p\u3c0.0001) and DFS (p\u3c0.001).
CONCLUSION: We identified three immunologically distinct clusters of UPS Associated with OS and DFS. Our data support further investigations of combination anti-PD-1/PD-L1 and adenosine pathway inhibitors in UPS
A global collaboRAtive study of CIC-rearranged, BCOR::CCNB3-rearranged and other ultra-rare unclassified undifferentiated small round cell sarcomas (GRACefUl)
[Background] Undifferentiated small round cell sarcomas (URCSs) represent a diagnostic challenge, and their optimal treatment is unknown. We aimed to define the clinical characteristics, treatment, and outcome of URCS patients.[Methods] URCS patients treated from 1983 to 2019 at 21 worldwide sarcoma reference centres were retrospectively identified. Based on molecular assessment, cases were classified as follows: (1) CIC-rearranged round cell sarcomas, (2) BCOR::CCNB3-rearranged round cell sarcomas, (3) unclassified URCSs. Treatment, prognostic factors and outcome were reviewed.[Results] In total, 148 patients were identified [88/148 (60%) CIC-rearranged sarcoma (median age 32 years, range 7–78), 33/148 (22%) BCOR::CCNB3-rearranged (median age 17 years, range 5–91), and 27/148 (18%) unclassified URCSs (median age 37 years, range 4–70)]. One hundred-one (68.2%) cases presented with localised disease; 47 (31.8%) had metastases at diagnosis. Male prevalence, younger age, bone primary site, and a low rate of synchronous metastases were observed in BCOR::CCNB3-rearranged cases. Local treatment was surgery in 67/148 (45%) patients, and surgery + radiotherapy in 52/148 (35%). Chemotherapy was given to 122/148 (82%) patients. At a 42.7-month median follow-up, the 3-year overall survival (OS) was 92.2% (95% CI 71.5–98.0) in BCOR::CCNB3 patients, 39.6% (95% CI 27.7–51.3) in CIC-rearranged sarcomas, and 78.7% in unclassified URCSs (95% CI 56.1–90.6; p < 0.0001).[Conclusions] This study is the largest conducted in URCS and confirms major differences in outcomes between URCS subtypes. A full molecular assessment should be undertaken when a diagnosis of URCS is suspected. Prospective studies are needed to better define the optimal treatment strategy in each URCS subtype.This work was supported by the Carisbo Foundation Call for Translational and Clinical Medical Research.Peer reviewe
Hypofractionated Radiation Therapy for Unresectable or Metastatic Sarcoma Lesions Provides Durable Tumor Control and Effective Palliation
https://openworks.mdanderson.org/sumexp21/1002/thumbnail.jp
Antitumor Activity of Lurbinectedin, a Selective Inhibitor of Oncogene Transcription, in Patients with Relapsed Ewing Sarcoma: Results of a Basket Phase II Study
Purpose: Lurbinectedin suppresses the oncogenic transcription factor EWS-FLI1 through relocalization to the nucleolus, and delays tumor growth in mice bearing Ewing sarcoma xenografts. On the basis of this rationale, lurbinectedin was evaluated in patients with relapsed Ewing sarcoma. Patients and Methods: This open-label, single-arm, Basket phase II trial included a cohort of 28 treated adult patients with confirmed Ewing sarcoma, measurable disease as per Response Evaluation Criteria In Solid Tumors (RECIST) v.1.1, Eastern Cooperative Oncology Group performance status ≤2, adequate organ function, no central nervous system metastasis, and pretreated with ≤2 chemotherapy lines for metastatic/recurrent disease. Patients received lurbinectedin 3.2mg/m2 as a 1-hour infusion every 3 weeks. Primary endpoint was overall response rate (ORR) as per RECIST v.1.1. Secondary endpoints included time-to-event parameters and safety profile. Results: ORR was 14.3% [95% confidence interval (CI), 4.0%-32.7%], with median duration of response of 4.2 months (95% CI, 2.9-5.5 months). Median progression-free survival was 2.7 months (95% CI, 1.4-4.3 months), clinical benefit rate was 39.3%, and disease control rate was 57.1%. With 39% censoring, median overall survival was 12.0 months (95% CI, 8.5- 18.5 months). Most common grade 3/4 adverse events were neutropenia (57%), anemia, thrombocytopenia, and treatmentrelated febrile neutropenia (14% each). No deaths or discontinuations were due to toxicity. Conclusions: Lurbinectedin was active in the treatment of relapsed Ewing sarcoma and had a manageable safety profile. Lurbinectedin could represent a valuable addition to therapies for Ewing sarcoma, and is currently being evaluated in combination with irinotecan in advanced Ewing sarcoma in a phase Ib/II trial.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
PET/CT Imaging as a Diagnostic Tool in Distinguishing Well-Differentiated versus Dedifferentiated Liposarcoma
Distinguishing well-differentiated liposarcoma (WDLPS) from dedifferentiated liposarcoma (DDLPS) is essential given distinct treatment paradigms and chemosensitivity. Percutaneous biopsy has a low sensitivity for detecting DDLPS. We sought to identify the diagnostic utility of positron emission tomography/computed tomography (PET/CT) in identifying WDLPS versus DDLPS. An independent radiologist reviewed PET/CT images to identify target lesions and determine the maximum standardized uptake value (SUVmax). An independent pathologist review confirmed WDLPS or DDLPS histology. A binary cutoff point of SUVmax was identified using a classification and regression trees (CART) algorithm. We identified 20 patients with WDLPS or DDLPS with 26 PET/CTs performed for separate recurrences that were followed by surgical sampling. Of the 26 records, 12 were DDLPS (46%) and 14 were WDLPS (54%). Patients with DDLPS had significantly higher SUVmax than those with WDLPS (p value = 0.0035). A SUVmax of 4 was identified as the cutoff point. Using this cutoff, the sensitivity of SUVmax identifying a case as DDLPS was 83.3% (95% CI: 51.6%, 97.9%) and the specificity was 85.7% (95% CI: 57.2%, 98.2%). PET/CT is a sensitive and specific diagnostic tool to identify the presence of dedifferentiation within the tumor