30 research outputs found

    MMP-2 mediates local degradation and remodeling of collagen by annulus fibrosus cells of the intervertebral disc

    Get PDF
    Degeneration of the intervertebral disc (IVD) is characterized by marked degradation and restructuring of the annulus fibrosus (AF). Although several matrix metalloproteinases (MMPs) have been found to be more prevalent in degenerate discs, their coordination and function within the context of the disease process are still not well understood. In this study, we sought to determine whether MMP-2 is associated with degenerative changes in the AF and to identify the manner by which AF cells use MMP-2. Two established animal models of disc degeneration, static compression and transannular needle puncture of rodent caudal discs, were examined for MMP-2 immunopositivity. With lentiviral transduction of an shRNA expression cassette, we screened and identified an effective shRNA sequence for generating stable RNA interference to silence MMP-2 expression in primary rat AF cells. Gelatin films were used to compare gelatinase activity and spatial patterns of degradation between transduced cells, and both noninfected and nonsense shRNA controls. The functional significance of MMP-2 was determined by assessing the ability for cells to remodel collagen gels. Both static compression and 18-g annular puncture of rodent caudal discs stimulated an increase in MMP-2 activity with concurrent lamellar disorganization in the AF, whereas 22-g and 26-g needle injuries did not. To investigate the functional role of MMP-2, we established lentivirus-mediated RNAi to induce stable knockdown of transcript levels by as much as 88%, and protein levels by as much as 95% over a 10-day period. Culturing transduced cells on gelatin films confirmed that MMP-2 is the primary functional gelatinase in AF cells, and that MMP-2 is used locally in regions immediately around AF cells. In collagen gels, transduced cells demonstrated an inability to remodel collagen matrices. Our study indicates that increases in MMP-2 observed in human degenerate discs are mirrored in experimentally induced degenerative changes in rodent animal models. AF cells appear to use MMP-2 in a very directed fashion for local matrix degradation and collagen remodeling. This suggests that MMP-2 may have a functionally significant role in the etiology of degenerative disc disease and could be a potential therapeutic target.https://doi.org/10.1186/ar4224https://doi.org/10.1186/1471-2164-14-28

    The Regulation Of Intervertebral Disc Cell Interactions With Their Surrounding Microenvironment

    Get PDF
    Intervertebral disc degeneration is the major cause of back pain in the US, which can be both physically debilitating and costly to treat. Current treatments include invasive surgeries, which can be effective in ameliorating pain, but also contain the risk of complications. Additionally, these strategies target clinical manifestations of disc degeneration, rather than examine the cause of degenerative changes. Therefore, current research focuses on finding minimally invasive treatments for disc disease such as gene therapy. Regulating intervertebral disc cell interactions with their immediate environment can be a useful tool in the development of therapeutic strategies. This was explored through environmental changes to assess shifts in cell phenotype as well as genetic modulation to elucidate alterations in cell function. Biochemical, nutritional, and physical factors were examined in immature nucleus pulposus cells to assess changes in gene expression, attachment, and proliferation. It was found that nutritional and physical factors can alter gene expression levels of NP cells, thereby altering cell phenotype. In addition, down-regulation of the proteolytic enzyme MMP-2 was explored through RNAi interference. Five shRNA lentiviral vectors were designed and validated for the sustained gene silencing of MMP-2. Silencing MMP-2 activity resulted in the inability of disc cells to focally degrade gelatin films as well as reduced ability of disc cells to remodel fibers in type I collagen gels, resulting in weakened gel architecture. These functional consequences were further explored in an in vivo study utilizing an annular needle-puncture model of disc degeneration. Injection of the shMMP lentiviral construct lead to decreased expression of MMP-2 in the disc, as well as improved disc height and morphology. Thus, the functional consequences of silencing MMP-2 were examined, elucidating its role in the degradative pathway leading to degenerative disc disease. The results of these studies can lay the foundation for developing therapeutic treatments for intervertebral disc degeneration

    Review of Top-of-Canopy Sun-Induced Fluorescence (SIF) Studies from Ground, UAV, Airborne to Spaceborne Observations

    No full text
    Remote sensing (RS) of sun-induced fluorescence (SIF) has emerged as a promising indicator of photosynthetic activity and related stress from the leaf to the ecosystem level. The implementation of modern RS technology on SIF is highly motivated by the direct link of SIF to the core of photosynthetic machinery. In the last few decades, a lot of studies have been conducted on SIF measurement techniques, retrieval algorithms, modeling, application, validation, and radiative transfer processes, incorporating different RS observations (i.e., ground, unmanned aerial vehicle (UAV), airborne, and spaceborne). These studies have made a significant contribution to the enrichment of SIF science over time. However, to realize the potential of SIF and to explore its full spectrum using different RS observations, a complete document of existing SIF studies is needed. Considering this gap, we have performed a detailed review of current SIF studies from the ground, UAV, airborne, and spaceborne observations. In this review, we have discussed the in-depth interpretation of each SIF study using four RS platforms. The limitations and challenges of SIF studies have also been discussed to motivate future research and subsequently overcome them. This detailed review of SIF studies will help, support, and inspire the researchers and application-based users to consider SIF science with confidence

    Monitoring the Impact of Environmental Manipulation on Peatland Surface by Simple Remote Sensing Indices

    No full text
    The behaviour of nature depends on the different components of climates. Among these, temperature and rainfall are two of the most important components which are known to change plant productivity. Peatlands are among the most valuable ecosystems on the Earth, which is due to its high biodiversity, huge soil carbon storage, and its sensitivity to different environmental factors. With the rapid growth in industrialization, the climate change is becoming a big concern. Therefore, this work is focused on the behaviour of Sphagnum peatland in Poland, subjected to environment manipulation. Here it has been shown how a simple reflectance based technique can be used to assess the impact of climate change on peatland. The experimental setup consists of four plots with two kind of manipulations (control, warming, reduced precipitation, and a combination of warming and reduced precipitation). Reflectance data were measured twice in August 2017 under a clear sky. Vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Photochemical Reflectance Index (PRI), near-infrared reflectance of vegetation (NIRv), MERIS terrestrial chlorophyll index (MTCI), Green chlorophyll index (CIgreen), Simple Ration (SR), and Water Band Index (WBI) were calculated to trace the impact of environmental manipulation on the plant community. Leaf Area Index of vascular plants was also measured for the purpose to correlate it with different VIs. The observation predicts that the global warming of 1掳C may cause a significant change in peatland behaviour which can be tracked and monitored by simple remote sensing indices

    Monitoring the Impact of Environmental Manipulation on Peatland Surface by Simple Remote Sensing Indices

    No full text
    The behaviour of nature depends on the different components of climates. Among these, temperature and rainfall are two of the most important components which are known to change plant productivity. Peatlands are among the most valuable ecosystems on the Earth, which is due to its high biodiversity, huge soil carbon storage, and its sensitivity to different environmental factors. With the rapid growth in industrialization, the climate change is becoming a big concern. Therefore, this work is focused on the behaviour of Sphagnum peatland in Poland, subjected to environment manipulation. Here it has been shown how a simple reflectance based technique can be used to assess the impact of climate change on peatland. The experimental setup consists of four plots with two kind of manipulations (control, warming, reduced precipitation, and a combination of warming and reduced precipitation). Reflectance data were measured twice in August 2017 under a clear sky. Vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Photochemical Reflectance Index (PRI), near-infrared reflectance of vegetation (NIRv), MERIS terrestrial chlorophyll index (MTCI), Green chlorophyll index (CIgreen), Simple Ration (SR), and Water Band Index (WBI) were calculated to trace the impact of environmental manipulation on the plant community. Leaf Area Index of vascular plants was also measured for the purpose to correlate it with different VIs. The observation predicts that the global warming of 1掳C may cause a significant change in peatland behaviour which can be tracked and monitored by simple remote sensing indices

    Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review

    No full text
    An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and their accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolism. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarizes the current understanding and the future possibilities of plant-nanoparticle research

    Exogenous Allantoin Confers Rapeseed (<i>Brassica campestris</i>) Tolerance to Simulated Drought by Improving Antioxidant Metabolism and Physiology

    No full text
    Allantoin is an emerging plant metabolite, but its role in conferring drought-induced oxidative stress is still elusive. Therefore, an experiment was devised to explore the role of allantoin (0.5 and 1.0 mM; foliar spray) in rapeseed (Brassica campestris cv. BARI Sarisha-17) under drought. Seedlings at fifteen days of age were subjected to drought, maintaining soil moisture levels at 50% and 25% field capacities, while well-irrigated plants served as the control group. Drought-stressed plants exhibited increased levels of lipid peroxidation and hydrogen peroxide, electrolyte leakage, and impaired glyoxalase systems. Thus, the growth, biomass, and yield attributes of rapeseed were significantly impaired under drought. However, the allantoin-supplemented plants showed a notable increase in their contents of ascorbate and glutathione and decreased dehydroascorbate and glutathione disulfide contents under drought. Moreover, the activity of antioxidant enzymes such as ascorbate peroxidase, dehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase were accelerated with the allantoin spray and the glyoxalase system was also enhanced under drought. Moreover, the improvement in water balance with reduction in proline and potassium ion contents was also observed when allantoin was applied to the plants. Overall, the beneficial effects of allantoin supplementation resulted in the improved plant growth, biomass, and yield of rapeseed under drought conditions. These findings suggest that allantoin acts as an efficient metabolite in mitigating the oxidative stress caused by reactive oxygen species by enhancing antioxidant defense mechanisms and the glyoxalase system

    Can Vegetation Indices Serve as Proxies for Potential Sun-Induced Fluorescence (SIF)? A Fuzzy Simulation Approach on Airborne Imaging Spectroscopy Data

    Get PDF
    In this study, we are testing a proxy for red and far-red Sun-induced fluorescence (SIF) using an integrated fuzzy logic modelling approach, termed as SIFfuzzy and SIFfuzzy-APAR. The SIF emitted from the core of the photosynthesis and observed at the top-of-canopy is regulated by three major controlling factors: (1) light interception and absorption by canopy plant cover; (2) escape fraction of SIF photons (fesc); (3) light use efficiency and non-photochemical quenching (NPQ) processes. In our study, we proposed and validated a fuzzy logic modelling approach that uses different combinations of spectral vegetation indices (SVIs) reflecting such controlling factors to approximate the potential SIF signals at 760 nm and 687 nm. The HyPlant derived and field validated SVIs (i.e., SR, NDVI, EVI, NDVIre, PRI) have been processed through the membership transformation in the first stage, and in the next stage the membership transformed maps have been processed through the Fuzzy Gamma simulation to calculate the SIFfuzzy. To test whether the inclusion of absorbed photosynthetic active radiation (APAR) increases the accuracy of the model, the SIFfuzzy was multiplied by APAR (SIFfuzzy-APAR). The agreement between the modelled SIFfuzzy and actual SIF airborne retrievals expressed by R2 ranged from 0.38 to 0.69 for SIF760 and from 0.85 to 0.92 for SIF687. The inclusion of APAR improved the R2 value between SIFfuzzy-APAR and actual SIF. This study showed, for the first time, that a diverse set of SVIs considered as proxies of different vegetation traits, such as biochemical, structural, and functional, can be successfully combined to work as a first-order proxy of SIF. The previous studies mainly included the far-red SIF whereas, in this study, we have also focused on red SIF along with far-red SIF. The analysis carried out at 1 m spatial resolution permits to better infer SIF behaviour at an ecosystem-relevant scal
    corecore