208 research outputs found

    BEAR, a Molecular Docking Refinement and Rescoring Method

    Get PDF
    BEAR (Binding Estimation After Refinement) is a computational method for structure-based virtual screening. It was set up as a post-docking processing tool for the refinement of ligand binding modes predicted by molecular docking programs and the accurate evaluation of free energies of binding. BEAR has been validated in a number of computational drug discovery applications. It performed well in discriminating active ligands with respect to molecular decoys of biological targets belonging to different protein families as well as in discovering biologically active hits. Recently, it has been validated also in the emerging field of G-protein coupled receptors structure based virtual screening

    Investigating the Selectivity of Allosteric Inhibitors for Mutant T790M EGFR over Wild Type Using Molecular Dynamics and Binding Free Energy Calculations

    Get PDF
    The recent discovery of the fourth generation EAI045 allosteric inhibitor, which potently and selectively inhibits mutant EGFR, represents an important step forward for the treatment of non-small cell lung cancer. However, the structural determinants of EAI045 selectivity with respect to the wild type (wt) protein have not been fully investigated. To this aim, we performed a comparative analysis of long-scale molecular dynamics simulations and binding free energy calculations on wt and T790M EGFR in complexes with the EAI001 and EAI045 allosteric ligands. Unexpectedly, we found that the observed selectivity for T790M EGFR over wt is not due to more favorable interactions of the two ligands with the mutated gatekeeper residue, as previously suggested. Rather, the allosteric ligands were engaged in a direct hydrogen bond with the Asp855 residue of the DFG motif in mutant T790M but not in wt, in which the hydrogen bond was found to be water-mediated. Per-residue decomposition of binding free energies suggests that the loss of a direct interaction with Asp855 is the main cause of inhibitor selectivity. Moreover, the possibility that the allosteric ligands and adenosine triphosphate may have synergistic binding effects, as previously observed in MEK allosteric inhibitors, was investigated. Altogether, the results suggest that ligand selectivity arises from direct hydrogen bonds with the Asp855 side chain, and that the design of mutant-selective inhibitors should be focused on ligands that form direct hydrogen bonds with Asp855 in T790M EGFR but not in wt EGFR. These results may provide useful hints for future structural design of mutant-selective allosteric inhibitors that spare wt EGFR, which is a highly desirable goal

    Chemoinformatics Analyses of Tau Ligands Reveal Key Molecular Requirements for the Identification of Potential Drug Candidates against Tauopathies

    Get PDF
    Tau is a highly soluble protein mainly localized at a cytoplasmic level in the neuronal cells, which plays a crucial role in the regulation of microtubule dynamic stability. Recent studies have demonstrated that several factors, such as hyperphosphorylation or alterations of Tau metabolism, may contribute to the pathological accumulation of protein aggregates, which can result in neuronal death and the onset of a number of neurological disorders called Tauopathies. At present, there are no available therapeutic remedies able to reduce Tau aggregation, nor are there any structural clues or guidelines for the rational identification of compounds preventing the accumulation of protein aggregates. To help identify the structural properties required for anti-Tau aggregation activity, we performed extensive chemoinformatics analyses on a dataset of Tau ligands reported in ChEMBL. The performed analyses allowed us to identify a set of molecular properties that are in common between known active ligands. Moreover, extensive analyses of the fragment composition of reported ligands led to the identification of chemical moieties and fragment combinations prevalent in the more active compounds. Interestingly, many of these fragments were arranged in recurring frameworks, some of which were clearly present in compounds currently under clinical investigation. This work represents the first in-depth chemoinformatics study of the molecular properties, constituting fragments and similarity profiles, of known Tau aggregation inhibitors. The datasets of compounds employed for the analyses, the identified molecular fragments and their combinations are made publicly available as supplementary material

    Prediction of activity and selectivity profiles of human Carbonic Anhydrase inhibitors using machine learning classification models

    Get PDF
    The development of selective inhibitors of the clinically relevant human Carbonic Anhydrase (hCA) isoforms IX and XII has become a major topic in drug research, due to their deregulation in several types of cancer. Indeed, the selective inhibition of these two isoforms, especially with respect to the homeostatic isoform II, holds great promise to develop anticancer drugs with limited side effects. Therefore, the development of in silico models able to predict the activity and selectivity against the desired isoform(s) is of central interest. In this work, we have developed a series of machine learning classification models, trained on high confidence data extracted from ChEMBL, able to predict the activity and selectivity profiles of ligands for human Carbonic Anhydrase isoforms II, IX and XII. The training datasets were built with a procedure that made use of flexible bioactivity thresholds to obtain well-balanced active and inactive classes. We used multiple algorithms and sampling sizes to finally select activity models able to classify active or inactive molecules with excellent performances. Remarkably, the results herein reported turned out to be better than those obtained by models built with the classic approach of selecting an a priori activity threshold. The sequential application of such validated models enables virtual screening to be performed in a fast and more reliable way to predict the activity and selectivity profiles against the investigated isoforms

    Selection of protein conformations for structure-based polypharmacology studies

    Get PDF
    Several drugs exert their therapeutic effect through the modulation of multiple targets. Structure-based approaches hold great promise for identifying compounds with the desired polypharmacological profiles. These methods use knowledge of the protein binding sites to identify stereoelectronically complementary ligands. The selection of the most suitable protein conformations to be used in the design process is vital, especially for multitarget drug design in which the same ligand has to be accommodated in multiple binding pockets. Herein, we focus on currently available techniques for the selection of the most suitable protein conformations for multitarget drug design, compare the potential advantages and limitations of each method, and comment on how their combination could help in polypharmacology drug design

    Identification of Promising Drug Candidates against Prostate Cancer through Computationally-Driven Drug Repurposing

    Get PDF
    Prostate cancer (PC) is one of the most common types of cancer in males. Although early stages of PC are generally associated with favorable outcomes, advanced phases of the disease present a significantly poorer prognosis. Moreover, currently available therapeutic options for the treatment of PC are still limited, being mainly focused on androgen deprivation therapies and being characterized by low efficacy in patients. As a consequence, there is a pressing need to identify alternative and more effective therapeutics. In this study, we performed large-scale 2D and 3D similarity analyses between compounds reported in the DrugBank database and ChEMBL molecules with reported anti-proliferative activity on various PC cell lines. The analyses included also the identification of biological targets of ligands with potent activity on PC cells, as well as investigations on the activity annotations and clinical data associated with the more relevant compounds emerging from the ligand-based similarity results. The results led to the prioritization of a set of drugs and/or clinically tested candidates potentially useful in drug repurposing against PC

    Drug Repurposing and Polypharmacology to Fight SARS-CoV-2 Through Inhibition of the Main Protease

    Get PDF
    The outbreak of a new coronavirus (SARS-CoV-2), which is responsible for the COVID-19 disease and is spreading rapidly around the world, urgently requires effective therapeutic treatments. In this context, drug repurposing represents a valuable strategy, as it enables accelerating the identification of drug candidates with already known safety profiles, possibly aiding in the late stages of clinical evaluation. Moreover, therapeutic treatments based on drugs with beneficial multi-target activities (polypharmacology) may show an increased antiviral activity or help to counteract severe complications concurrently affecting COVID-19 patients. In this study, we present the results of a computational drug repurposing campaign that aimed at identifying potential inhibitors of the main protease (Mpro) of the SARS-CoV-2. The performed in silico screening allowed the identification of 22 candidates with putative SARS-CoV-2 Mpro inhibitory activity. Interestingly, some of the identified compounds have recently entered clinical trials for COVID-19 treatment, albeit not being assayed for their SARS-CoV-2 antiviral activity. Some candidates present a polypharmacology profile that may be beneficial for COVID-19 treatment and, to the best of our knowledge, have never been considered in clinical trials. For each repurposed compound, its therapeutic relevance and potential beneficial polypharmacological effects that may arise due to its original therapeutic indication are thoroughly discussed

    Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2

    Get PDF
    Allosteric targeting of protein kinases via displacement of the structural αC helix with type III allosteric inhibitors is currently gaining a foothold in drug discovery. Recently, the first crystal structure of CDK2 with an open allosteric pocket adjacent to the αC helix has been described, prospecting new opportunities to design more selective inhibitors, but the structure has not yet been exploited for the structure-based design of type III allosteric inhibitors. In this work we report the results of a virtual screening campaign that resulted in the discovery of the first-in-class type III allosteric ligands of CDK2. Using a combination of docking and post-docking analyses made with our tool BEAR, 7 allosteric ligands (hit rate of 20%) with micromolar affinity for CDK2 were identified, some of them inhibiting the growth of breast cancer cell lines in the micromolar range. Competition experiments performed in the presence of the ATP-competitive inhibitor staurosporine confirmed that the 7 ligands are truly allosteric, in agreement with their design. Of these, compound 2 bound CDK2 with an EC50 value of 3 μM and inhibited the proliferation of MDA-MB231 and ZR-75-1 breast cancer cells with IC50 values of approximately 20 μM, while compound 4 had an EC50 value of 71 μM and IC50 values around 4 μM. Remarkably, the most potent compound 4 was able to selectively inhibit CDK2-mediated Retinoblastoma phosphorylation, confirming that its mechanism of action is fully compatible with a selective inhibition of CDK2 phosphorylation in cells. Finally, hit expansion through analog search of the most potent inhibitor 4 revealed an additional ligand 4g with similar in vitro potency on breast cancer cells
    • …
    corecore