31 research outputs found
Targeting effect on gait parameters in healthy individuals and post-stroke hemiparetic individuals
Background:
A targeting effect may occur in any gait analysis trial where the participant is instructed to step in a particular area or a clearly marked target is in their path. The targeting effect may affect the gait parameters and any variability being studied in regard to the participants. There are few studies examining this effect for healthy subjects and none for special populations.
Methods:
This study aimed to investigate if any targeting effects occurred in healthy and stroke-survivor populations. Eight male participants were recruited, four of whom exhibited right-hand side hemiparesis resulting from stroke. Each participant performed a series of gait trials at a comfortable walking pace after being made aware of the force plate in the centre of the walkway. The participants gait was then analysed and compared before and after the target force plate.
Results:
The results of the trials showed significant variations (p < 0.005) in the spatiotemporal gait parameters in both the healthy and stroke-survivor groups indicating a targeting effect.
Conclusions:
The effects were similar in both groups with the step speed and length being slower and shorter for the targeting step compared to the step after the force plate
An Optimized Design of a Parallel Robot for Gait Training
The guidelines for enhancing robot-assisted training for post-stroke survivors head towards increasing exercise realism and variability; in particular lower limb rehabilitation needs the patient to feel challenged to adapt his locomotion and dynamic balance capabilities to different virtual ground scenarios. This paper proposes a design for a robot whose end-effector acts as a footplate to be in permanent contact with the user's foot during practice: the structure is such that it enables the user's foot to rotate around three axis, differently from what is currently available in the research for gait training; the parallel kinematic structure and the dimensional synthesis allow a suitable range of motion and aim at limiting device mass, footprint and reaction forces on the actuators when rendering virtual ground. The employed methodology has been validated using ground reaction forces data relative to stroke survivors
A pilot double-blind randomised placebo-controlled trial of the effects of fixed-dose combination therapy ('polypill') on cardiovascular risk factors
SummaryAim: Our objective was to investigate the effects and tolerability of fixed-dose combination therapy on blood pressure and LDL in adults without elevated blood pressure or lipid levels. Methods: This was a double-blind randomised placebo-controlled trial in residents of Kalaleh, Golestan, Iran. Following an 8-week placebo run-in period, 475 participants, aged 50 to 79 years, without cardiovascular disease, hypertension or hyperlipidaemia were randomised to fixed-dose combination therapy with aspirin 81 mg, enalapril 2.5 mg, atorvastatin 20 mg and hydrochlorothiazide 12.5 mg (polypill) or placebo for a period of 12 months. The primary outcomes were changes in LDL-cholesterol, systolic and diastolic blood pressure and adverse reactions. Analysis was by intention-to-treat basis. Results: At baseline, there were differences in systolic blood pressure (6 mmHg). Taking account of baseline differences, at 12 months, polypill was associated with statistically significant reductions in blood pressure (4.5/1.6 mmHg) and LDL-cholesterol (0.46 mmol/l). The study drug was well tolerated, but resulted in the modest reductions in blood pressure and lipid levels. Conclusion: The effects of the polypill on blood pressure and lipid levels were less than anticipated, raising questions about the reliability of the reported compliance. There is a case for a fully powered trial of a polypill for the prevention of cardiovascular disease. © 2010 Blackwell Publishing Ltd
Recommended from our members
Roadmap for a sustainable circular economy in lithium-ion and future battery technologies
The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future
Characterization and Separation Performance of a Novel Polyethersulfone Membrane Blended with Acacia Gum
Novel polyethersulfone (PES) membranes blended with 0.1–3.0 wt. % of Acacia gum (AG) as a pore-former and antifouling agent were fabricated using phase inversion technique. The effect of AG on the pore-size, porosity, surface morphology, surface charge, hydrophilicity, and mechanical properties of PES/AG membranes was studied by scanning electron microscopy (SEM), Raman spectroscopy, contact angle and zeta potential measurements. The antifouling -properties of PES/AG membranes were evaluated using Escherichia coli bacteria and bovine serum albumine (BSA). The use of AG as an additive to PES membranes was found to increase the surface charge, hydrophilicity (by 20%), porosity (by 77%) and permeate flux (by about 130%). Moreover, PES/AG membranes demonstrated higher antifouling and tensile stress (by 31%) when compared to pure PES membranes. It was shown that the prepared PES/AG membranes efficiently removed lead ions from aqueous solutions. Both the sieving mechanism of the membrane and chelation of lead with AG macromolecules incorporated in the membrane matrix contributed to lead removal. The obtained results indicated that AG can be used as a novel pore-former, hydrophilizing and antifouling agent, as well as an enhancer to the mechanical and rejection properties of the PES membranes
Roadmap for a sustainable circular economy in lithium-ion and future battery technologies
The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future