10 research outputs found

    M19 Modulates Skeletal Muscle Differentiation and Insulin Secretion in Pancreatic β-Cells through Modulation of Respiratory Chain Activity

    Get PDF
    Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion

    Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface

    Get PDF
    Lipopolysaccharide (LPS) O-antigen (O-Ag) is known to limit antibody binding to surface antigens, although the relationship between antibody, O-Ag and other outer-membrane antigens is poorly understood. Here we report, immunization with the trimeric porin OmpD from Salmonella Typhimurium (STmOmpD) protects against infection. Atomistic molecular dynamics simulations indicate this is because OmpD trimers generate footprints within the O-Ag layer sufficiently sized for a single IgG Fab to access. While STmOmpD differs from its orthologue in S. Enteritidis (SEn) by a single amino-acid residue, immunization with STmOmpD confers minimal protection to SEn. This is due to the OmpD-O-Ag interplay restricting IgG binding, with the pairing of OmpD with its native O-Ag being essential for optimal protection after immunization. Thus, both the chemical and physical structure of O-Ag are key for the presentation of specific epitopes within proteinaceous surface-antigens. This enhances combinatorial antigenic diversity in Gram-negative bacteria, while reducing associated fitness costs

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding

    Central Retinal Artery Occlusion: Acute Management and Treatment

    No full text
    This review will seek to answer if advances in ophthalmic imaging and evolution of treatment modalities have shed further light on the epidemiology, pathophysiology, diagnosis, and acute management of acute CRAO. Imaging characteristics of acute CRAO have been further characterized with the use of fluorescein angiography, optical coherence tomography (OCT), OCT-angiography, and indocyanine-green angiography. Layer segmentation of OCT imaging has found inner retinal layer hyper-reflectivity to be a common finding in acute CRAO. Non-invasive therapies, fibrinolytic delivery, and surgical interventions for acute CRAO have been further evaluated as potential management tools. A large body of literature reports very inconsistent treatment success with a wide variety of modalities. Currently, there is no clear evidence supporting the use of fibrinolytics in acute CRAO. Large, multicenter, randomized control trials are necessary to elucidate the role of the various acute treatment options in the management of CRAO

    Paraneoplastische endokrine Syndrome

    No full text

    Prevalence of Hepatitis D in the Eastern Mediterranean Region: Systematic Review and Meta Analysis

    No full text
    corecore