5 research outputs found

    Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    Get PDF
    Background: Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca(2+)-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca(2+)-ion cyclotron resonance conditions. Results: An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca(2+) cyclotron frequency of 50 Hz. The resulting changes in free Ca(2+) were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca(2+) were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion: Considering the various functions of Ca(2+) as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at magnetic field strengths weak enough, to occur occasionally in our all day environment

    Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance

    Get PDF
    BACKGROUND: The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in definite frequency- and intensity ranges ("windows") of simultaneously impacting magnetic and electromagnetic fields related by a linear equation, which meanwhile is proven by a number of in vivo and in vitro experiments. METHODS: Barley seedlings (Hordeum vulgare, L. var. Steffi) were grown in the dark for 5 and 6 days under static magnetic and 50 Hz electromagnetic fields matching the ICR conditions of Ca(2+). Control cultures were grown under normal geomagnetic conditions, not matching this ICR. Morphology, pigmentation and long-term development of the adult plants were subsequently investigated. RESULTS: The shoots of plants exposed to Ca(2+)-ICR exposed grew 15–20% shorter compared to the controls, the plant weight was 10–12% lower, and they had longer coleoptiles that were adhering stronger to the primary leaf tissue. The total pigment contents of protochlorophyllide (PChlide) and carotenoids were significantly decreased. The rate of PChlide regeneration after light irradiation was reduced for the Ca(2+)-ICR exposed plants, also the Shibata shift was slightly delayed. Even a longer subsequent natural growing phase without any additional fields could only partially eliminate these effects: the plants initially exposed to Ca(2+)-ICR were still significantly shorter and had a lower chlorophyll (a+b) content compared to the controls. A continued cultivation and observation of the adult plants under natural conditions without any artificial electromagnetic fields showed a retardation of the originally Ca(2+)-ICR exposed plants compared to control cultures lasting several weeks, with an increased tendency for dehydration. CONCLUSION: A direct influence of the applied MF and EMF is discussed affecting Ca(2+ )levels via the ICR mechanism. It influences the available Ca(2+ )and thereby regulatory processes. Theoretical considerations on molecular level focus on ionic interactions with water related to models using quantum electrodynamics

    Native state, energetic interaction of chlorophyll precursors and intraplastid location of S-adenosyl-L-methionine: Mg-protoporphyrin IX methyltransferase <span style="font-size:14.0pt;line-height:115%;font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-IN; mso-fareast-language:EN-IN;mso-bidi-language:HI" lang="EN-IN">in etiolated leaves</span>

    No full text
    192-201Low temperature fluorescence spectra (FS) and fluorescence excitation spectra (FES) of protoporphyrin IX (Proto),Mg-protoporphyrin IX and its monomethyl ester (MgProto-ME) and protochlorophyllide (Pchlide) in etiolated barley leaves treated with 5-aminolevulinic acid and/or 2,2'-dipyridyl were studied. The spectra of Proto and MgProto-ME showed a little dependence on temperature of registration and exhibited similarity to low temperature spectra in diluted organic and buffer solutions. However, a red wavelength shift for Soret bands of Proto and MgProto-ME was observed due to porphyrin interaction with bovine serum albumin in 0.05 M, Na2HPO4 solution at room temperature. Disaggregating treatments had no effect on Proto and MgProto-ME spectra in plants. These results suggested that in etiolated leaves Proto and MgProto-ME molecules were in a monomer state. The spectral properties of these molecules were determined by interaction of porphyrins with proteins and other plastid membrane components. The spectral analyses indicated an efficient energy migration from Proto and MgProto-ME molecules to active form of Pchlide which emitted at 656nm, and no energy transfer from carotenoids to porphyrins in vivo. These findings suggested that Proto and MgProto-ME from carotenoids, and close location of these porphyrins and photoactive Pchlide in etioplast membranes. The latter conclusion was strongly supported by an observation that in etiolated leave s, S-adenosyl-L-methionin:Mg-protoporphyrin IX methyltransferase, which converts MgProto into MgProtoME, were located not only in prothylakoids but also in prolamellar bodies containing photoactive Pchlide.</span
    corecore