53 research outputs found

    Seasonality, mediation and comparison (SMAC) methods to identify influences on lung function decline.

    Get PDF
    This study develops a comprehensive method to assess seasonal influences on a longitudinal marker and compare estimates between cohorts. The method extends existing approaches by (i) combining a sine-cosine model of seasonality with a specialized covariance function for modeling longitudinal correlation; (ii) performing mediation analysis on a seasonality model. An example dataset and R code are provided. The bundle of methods is referred to as seasonality, mediation and comparison (SMAC). The case study described utilizes lung function as the marker observed on a cystic fibrosis cohort but SMAC can be used to evaluate other markers and in other disease contexts. Key aspects of customization are as follows.�This study introduces a novel seasonality model to fit trajectories of lung function decline and demonstrates how to compare this model to a conventional model in this context.�Steps required for mediation analyses in the seasonality model are shown.�The necessary calculations to compare seasonality models between cohorts, based on estimation coefficients, are derived in the study

    Built environment factors predictive of early rapid lung function decline in cystic fibrosis

    Get PDF
    Background: The extent to which environmental exposures and community characteristics of the built environment collectively predict rapid lung function decline, during adolescence and early adulthood in cystic fibrosis (CF), has not been examined. Objective: To identify built environment characteristics predictive of rapid CF lung function decline. Methods: We performed a retrospective, single-center, longitudinal cohort study (n = 173 individuals with CF aged 6–20 years, 2012–2017). We used a stochastic model to predict lung function, measured as forced expiratory volume in 1 s (FEV1) of % predicted. Traditional demographic/clinical characteristics were evaluated as predictors. Built environmental predictors included exposure to elemental carbon attributable to traffic sources (ECAT), neighborhood material deprivation (poverty, education, housing, and healthcare access), greenspace near the home, and residential drivetime to the CF center. Measurements and Main Results: The final model, which included ECAT, material deprivation index, and greenspace, alongside traditional demographic/clinical predictors, significantly improved fit and prediction, compared with only demographic/clinical predictors (Likelihood Ratio Test statistic: 26.78, p < 0.0001; the difference in Akaike Information Criterion: 15). An increase of 0.1 μg/m3 of ECAT was associated with 0.104% predicted/yr (95% confidence interval: 0.024, 0.183) more rapid decline. Although not statistically significant, material deprivation was similarly associated (0.1-unit increase corresponded to additional decline of 0.103% predicted/year [−0.113, 0.319]). High-risk regional areas of rapid decline and age-related heterogeneity were identified from prediction mapping. Conclusion: Traffic-related air pollution exposure is an important predictor of rapid pulmonary decline that, coupled with community-level material deprivation and routinely collected demographic/clinical characteristics, enhance CF prognostication and enable personalized environmental health interventions

    Abstracts from the 3rd Conference on Aneuploidy and Cancer: Clinical and Experimental Aspects

    Get PDF
    corecore