13 research outputs found

    Immunohistochemical localization of inflammatory cells and cell cycle proteins in the gills of Loma salmonae infected rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Author's accepted version (post-print).Microsporidial gill diseases particularly those caused by Loma salmonae incur significant economic losses to the salmonid aquaculture industry. The gill responses to infection include the formation of xenomas and the acute hyperplastic inflammatory responses once the xenomas rupture releasing infective spores. The aim of this work was to characterize the inflammatory responses of the gill to both the presence of the xenomas as well as the hyperplasia associated with L. salmonae infection in the rainbow trout gill following an experimental infection using immunohistochemistry. Hyperplastic lesions demonstrated numerous cells expressing PCNA as well as an apparent increased expression of caspase-3 and number of apoptotic cells (TUNEL positive cells). There was an expression of TNFα in individual cells within the gill and increased expression of a myeloid cell line antigen indicating the presence of granulocyte infiltration of both the hyperplastic lesions as well as the xenomas. Similar immune-reactivity was seen in gill EGCs. Hyperplastic gill lesions showed a marked infiltration of CD8+ cells and expression of MHC class I antigens. These findings suggest that L. salmonae xenomas may be subject to infiltration by the host immune cells as well as the mounting or a marked cellular cytotoxic immunoreaction in the resultant hyperplasia following xenoma rupture and spore release.acceptedVersio

    DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli

    Get PDF
    The ability to change cell morphology is an advantageous characteristic adopted by multiple pathogenic bacteria in order to evade host immune detection and assault during infection. Uropathogenic Escherichia coli (UPEC) exhibits such cellular dynamics and has been shown to transition through a series of distinct morphological phenotypes during a urinary tract infection. Here, we report the first systematic spatio-temporal gene expression analysis of the UPEC transition through these phenotypes by using a flow chamber-based in vitro infection model that simulates conditions in the bladder. This analysis revealed a novel association between the cell division gene damX and reversible UPEC filamentation. We demonstrate a lack of reversible bacterial filamentation in a damX deletion mutant in vitro and absence of a filamentous response by this mutant in a murine model of cystitis. While deletion of damX abrogated UPEC filamentation and secondary surface colonization in tissue culture and in mouse infections, transient overexpression of damX resulted in reversible UPEC filamentation. In this study, we identify a hitherto-unknown damX-mediated mechanism underlying UPEC morphotypical switching. Murine infection studies showed that DamX is essential for establishment of a robust urinary tract infection, thus emphasizing its role as a mediator of virulence. Our study demonstrates the value of an in vitro methodology, in which uroepithelium infection is closely simulated, when undertaking targeted investigations that are challenging to perform in animal infection models

    Immunohistochemical localization of inflammatory cells and cell cycle proteins in the gills of Loma salmonae infected rainbow trout (Oncorhynchus mykiss)

    No full text
    Microsporidial gill diseases particularly those caused by Loma salmonae incur significant economic losses to the salmonid aquaculture industry. The gill responses to infection include the formation of xenomas and the acute hyperplastic inflammatory responses once the xenomas rupture releasing infective spores. The aim of this work was to characterize the inflammatory responses of the gill to both the presence of the xenomas as well as the hyperplasia associated with L. salmonae infection in the rainbow trout gill following an experimental infection using immunohistochemistry. Hyperplastic lesions demonstrated numerous cells expressing PCNA as well as an apparent increased expression of caspase-3 and number of apoptotic cells (TUNEL positive cells). There was an expression of TNFα in individual cells within the gill and increased expression of a myeloid cell line antigen indicating the presence of granulocyte infiltration of both the hyperplastic lesions as well as the xenomas. Similar immune-reactivity was seen in gill EGCs. Hyperplastic gill lesions showed a marked infiltration of CD8+ cells and expression of MHC class I antigens. These findings suggest that L. salmonae xenomas may be subject to infiltration by the host immune cells as well as the mounting or a marked cellular cytotoxic immunoreaction in the resultant hyperplasia following xenoma rupture and spore release
    corecore