53 research outputs found

    Probe design for expression arrays using OligoWiz

    Get PDF

    FeatureExtract—extraction of sequence annotation made easy

    Get PDF
    Work on a large number of biological problems benefits tremendously from having an easy way to access the annotation of DNA sequence features, such as intron/exon structure, the contents of promoter regions and the location of other genes in upsteam and downstream regions. For example, taking the placement of introns within a gene into account can help in a phylogenetic analysis of homologous genes. Designing experiments for investigating UTR regions using PCR or DNA microarrays require knowledge of known elements in UTR regions and the positions and strandness of other genes nearby on the chromosome. A wealth of such information is already known and documented in databases such as GenBank and the NCBI Human Genome builds. However, it usually requires significant bioinformatics skills and intimate knowledge of the data format to access this information. Presented here is a highly flexible and easy-to-use tool for extracting feature annotation from GenBank entries. The tool is also useful for extracting datasets corresponding to a particular feature (e.g. promoters). Most importantly, the output data format is highly consistent, easy to handle for the user and easy to parse computationally. The FeatureExtract web server is freely available for both academic and commercial use at

    Virtual Ribosome—a comprehensive DNA translation tool with support for integration of sequence feature annotation

    Get PDF
    Virtual Ribosome is a DNA translation tool with two areas of focus. (i) Providing a strong translation tool in its own right, with an integrated ORF finder, full support for the IUPAC degenerate DNA alphabet and all translation tables defined by the NCBI taxonomy group, including the use of alternative start codons. (ii) Integration of sequences feature annotation—in particular, native support for working with files containing intron/exon structure annotation. The software is available for both download and online use at

    An overabundance of phase 0 introns immediately after the start codon in eukaryotic genes

    Get PDF
    BACKGROUND: A knowledge of the positions of introns in eukaryotic genes is important for understanding the evolution of introns. Despite this, there has been relatively little focus on the distribution of intron positions in genes. RESULTS: In proteins with signal peptides, there is an overabundance of phase 1 introns around the region of the signal peptide cleavage site. This has been described before. But in proteins without signal peptides, a novel phenomenon is observed: There is a sharp peak of phase 0 intron positions immediately following the start codon, i.e. between codons 1 and 2. This effect is seen in a wide range of eukaryotes: Vertebrates, arthropods, fungi, and flowering plants. Proteins carrying this start codon intron are found to comprise a special class of relatively short, lysine-rich and conserved proteins with an overrepresentation of ribosomal proteins. In addition, there is a peak of phase 0 introns at position 5 in Drosophila genes with signal peptides, predominantly representing cuticle proteins. CONCLUSION: There is an overabundance of phase 0 introns immediately after the start codon in eukaryotic genes, which has been described before only for human ribosomal proteins. We give a detailed description of these start codon introns and the proteins that contain them

    OligoWiz 2.0—integrating sequence feature annotation into the design of microarray probes

    Get PDF
    OligoWiz 2.0 is a powerful tool for microarray probe design that allows for integration of sequence annotation, such as exon/intron structure, untranslated regions (UTRs), transcription start site, etc. In addition to probe selection according to a series of probe quality parameters, cross-hybridization, T(m), position in transcript, probe folding and low-complexity, the program facilitates automatic placement of probes relative to the sequence annotation. The program also supports automatic placement of multiple probes per transcript. Together these facilities make advanced probe design feasible for scientists inexperienced in computerized information management. Furthermore, we show that probes designed using OligoWiz 2.0 give rise to consistent hybridization results ()

    Optimization of the BLASTN substitution matrix for prediction of non-specific DNA microarray hybridization

    Get PDF
    DNA microarray measurements are susceptible to error caused by non-specific hybridization between a probe and a target (cross-hybridization), or between two targets (bulk-hybridization). Search algorithms such as BLASTN can quickly identify potentially hybridizing sequences. We set out to improve BLASTN accuracy by modifying the substitution matrix and gap penalties. We generated gene expression microarray data for samples in which 1 or 10% of the target mass was an exogenous spike of known sequence. We found that the 10% spike induced 2-fold intensity changes in 3% of the probes, two-third of which were decreases in intensity likely caused by bulk-hybridization. These changes were correlated with similarity between the spike and probe sequences. Interestingly, even very weak similarities tended to induce a change in probe intensity with the 10% spike. Using this data, we optimized the BLASTN substitution matrix to more accurately identify probes susceptible to non-specific hybridization with the spike. Relative to the default substitution matrix, the optimized matrix features a decreased score for A–T base pairs relative to G–C base pairs, resulting in a 5–15% increase in area under the ROC curve for identifying affected probes. This optimized matrix may be useful in the design of microarray probes, and in other BLASTN-based searches for hybridization partners

    FeatureMap3D—a tool to map protein features and sequence conservation onto homologous structures in the PDB

    Get PDF
    FeatureMap3D is a web-based tool that maps protein features onto 3D structures. The user provides sequences annotated with any feature of interest, such as post-translational modifications, protease cleavage sites or exonic structure and FeatureMap3D will then search the Protein Data Bank (PDB) for structures of homologous proteins. The results are displayed both as an annotated sequence alignment, where the user-provided annotations as well as the sequence conservation between the query and the target sequence are displayed, and also as a publication-quality image of the 3D protein structure with the selected features and sequence conservation enhanced. The results are also returned in a readily parsable text format as well as a PyMol () script file, which allows the user to easily modify the protein structure image to suit a specific purpose. FeatureMap3D can also be used without sequence annotation, to evaluate the quality of the alignment of the input sequences to the most homologous structures in the PDB, through the sequence conservation colored 3D structure visualization tool. FeatureMap3D is available at:

    Improving comparability between microarray probe signals by thermodynamic intensity correction

    Get PDF
    Signals from different oligonucleotide probes against the same target show great variation in intensities. However, detection of differences along a sequence e.g. to reveal intron/exon architecture, transcription boundary as well as simple absent/present calls depends on comparisons between different probes. It is therefore of great interest to correct for the variation between probes. Much of this variation is sequence dependent. We demonstrate that a thermodynamic model for hybridization of either DNA or RNA to a DNA microarray, which takes the sequence-dependent probe affinities into account significantly reduces the signal fluctuation between probes targeting the same gene transcript. For a test set of tightly tiled yeast genes, the model reduces the variance by up to a factor ∼1/3. As a consequence of this reduction, the model is shown to yield a more accurate determination of transcription start sites for a subset of yeast genes. In another application, we identify present/absent calls for probes hybridized to the sequenced Escherichia coli strain O157:H7 EDL933. The model improves the correct calls from 85 to 95% relative to raw intensity measures. The model thus makes applications which depend on comparisons between probes aimed at different sections of the same target more reliable

    Response of young and adult birds to the same environmental variables and different spatial scales during post breeding period

    Get PDF
    Context: How do young birds achieve spatial knowledge about the environment during the initial stages of their life? They may follow adults, so gaining social information and learning; alternatively, young birds may acquire knowledge of the environment themselves by experiencing habitat and landscape features. If learning is at least partially independent of adults then young birds should respond to landscape composition at finer spatial scale than adults, who possess knowledge over a larger area. Objectives: We studied the responses of juvenile, immature and adult Caspian Gull Larus cachinnans to the same habitat and landscape variables, but at several spatial scales (ranging from 2.5 to 15\ua0km), during post-breeding period. Methods: We surveyed 61 fish ponds (foraging patches) in southern Poland and counted Caspian gulls. Results: Juvenile birds responded at finer spatial scales to the factors than did adults. Immature birds showed complicated, intermediate responses to spatial scale. The abundance of juvenile birds was mostly correlated with the landscape composition (positively with the cover of corridors and negatively with barriers). Adult abundance was positively related to foraging patch quality (fish stock), which clearly required previous spatial experience of the environment. The abundance of all age classes were moderately correlated with each other indicating that social behaviour may also contribute to the learning of the environment. Conclusions: This study shows that as birds mature, they respond differently to components of their environment at different spatial scales. This has considerable ecological consequences for their distribution across environments
    corecore