48 research outputs found
Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method
The application of the Gardner method for generation of conservation laws to
all the ABS equations is considered. It is shown that all the necessary
information for the application of the Gardner method, namely B\"acklund
transformations and initial conservation laws, follow from the multidimensional
consistency of ABS equations. We also apply the Gardner method to an asymmetric
equation which is not included in the ABS classification. An analog of the
Gardner method for generation of symmetries is developed and applied to
discrete KdV. It can also be applied to all the other ABS equations
Infinitely many conservation laws for the discrete KdV equation
In \cite{RH3} Rasin and Hydon suggested a way to construct an infinite number
of conservation laws for the discrete KdV equation (dKdV), by repeated
application of a certain symmetry to a known conservation law. It was not
decided, however, whether the resulting conservation laws were distinct and
nontrivial. In this paper we obtain the following results: (1) We give an
alternative method to construct an infinite number of conservation laws using a
discrete version of the Gardner transformation. (2) We give a direct proof that
the Rasin-Hydon conservation laws are indeed distinct and nontrivial. (3) We
consider a continuum limit in which the dKdV equation becomes a first-order
eikonal equation. In this limit the two sets of conservation laws become the
same, and are evidently distinct and nontrivial. This proves the nontriviality
of the conservation laws constructed by the Gardner method, and gives an
alternate proof of the nontriviality of the conservation laws constructed by
the Rasin-Hydon method
Construction of Integrals of Higher-Order Mappings
We find that certain higher-order mappings arise as reductions of the
integrable discrete A-type KP (AKP) and B-type KP (BKP) equations. We find
conservation laws for the AKP and BKP equations, then we use these conservation
laws to derive integrals of the associated reduced maps.Comment: appear to Journal of the Physical Society of Japa
An algebraic method of classification of S-integrable discrete models
A method of classification of integrable equations on quad-graphs is
discussed based on algebraic ideas. We assign a Lie ring to the equation and
study the function describing the dimensions of linear spaces spanned by
multiple commutators of the ring generators. For the generic case this function
grows exponentially. Examples show that for integrable equations it grows
slower. We propose a classification scheme based on this observation.Comment: 11 pages, workshop "Nonlinear Physics. Theory and Experiment VI",
submitted to TM
Symmetry algebra of discrete KdV equations and corresponding differential-difference equations of Volterra type
A sequence of canonical conservation laws for all the Adler-Bobenko-Suris
equations is derived and is employed in the construction of a hierarchy of
master symmetries for equations H1-H3, Q1-Q3. For the discrete potential and
Schwarzian KdV equations it is shown that their local generalized symmetries
and non-local master symmetries in each lattice direction form centerless
Virasoro type algebras. In particular, for the discrete potential KdV, the
structure of its symmetry algebra is explicitly given. Interpreting the
hierarchies of symmetries of equations H1-H3, Q1-Q3 as differential-difference
equations of Yamilov's discretization of Krichever-Novikov equation,
corresponding hierarchies of isospectral and non-isospectral zero curvature
representations are derived for all of them.Comment: 22 page
The lattice Schwarzian KdV equation and its symmetries
In this paper we present a set of results on the symmetries of the lattice
Schwarzian Korteweg-de Vries (lSKdV) equation. We construct the Lie point
symmetries and, using its associated spectral problem, an infinite sequence of
generalized symmetries and master symmetries. We finally show that we can use
master symmetries of the lSKdV equation to construct non-autonomous
non-integrable generalized symmetries.Comment: 11 pages, no figures. Submitted to Jour. Phys. A, Special Issue SIDE
VI
Continuous symmetric reductions of the Adler-Bobenko-Suris equations
Continuously symmetric solutions of the Adler-Bobenko-Suris class of discrete
integrable equations are presented. Initially defined by their invariance under
the action of both of the extended three point generalized symmetries admitted
by the corresponding equations, these solutions are shown to be determined by
an integrable system of partial differential equations. The connection of this
system to the Nijhoff-Hone-Joshi "generating partial differential equations" is
established and an auto-Backlund transformation and a Lax pair for it are
constructed. Applied to the H1 and Q1 members of the
Adler-Bobenko-Suris family, the method of continuously symmetric reductions
yields explicit solutions determined by the Painleve trancendents.Comment: 28 pages, submitted to J. Phys. A: Math. Theo
Classification of integrable discrete Klein-Gordon models
The Lie algebraic integrability test is applied to the problem of
classification of integrable Klein-Gordon type equations on quad-graphs. The
list of equations passing the test is presented containing several well-known
integrable models. A new integrable example is found, its higher symmetry is
presented.Comment: 12 pages, submitted to Physica Script
Experience and features at studying of bases of gerontology at students of stomatologic faculty in introduction in credit-module system
У статті викладені аспекти викладання основ геронтології та геріатрії в клініці внутрішніх хвороб, яке проводитиметься на кафедрі внутрішньої медицини з метою вдосконалення знань і практичних навичок у студентів 3 курсу, які навчаються за спеціальністю «стоматологія» в умовах запровадження кредитно-модульної системи з використанням системи програмірованной контрольованої самостійної роботи студентів. Основною метою курсу є вивчення студентами вікових змін, які відбуваються в старіючому організмі, особливостей перебігу захворювань у осіб похилого та старечого віку, методів профілактики, основних принципів фармакотерапії
Профілізація - основа підвищення якості підготовки cтоматологів із внутрішніх хвороб
Наведено досвід роботи кафедри внутрішньої медицини № 3 ВДНЗУ «УМСА». Показано, що протягом
останніх 20 років пріоритетним завданням кафедри було максимальне наближення викладання внутрішніх хвороб до реальних потреб лікаря-стоматолога. Це стосується впровадження нових програм із дисципліни (остання в редакції 2015 року), нових підручників і навчальних посібників, зближення змісту і методики навчання студентів стоматологічного факультету зі світовою та європейською практикою