4 research outputs found

    Une approche globale de la Voie Ral : identification d'un nouvel acteur : Stk38

    No full text
    Les GTPases Ral, RalA et RalB, sont des effecteurs proximaux de l’oncogĂšne Ras.MalgrĂ© leur forte homologie, leurs activateurs communs (les RalGEFs) et des effecteurs communs (le complexe exocyste), ils apportent des contributions distinctes et parfois collaborent Ă  diverses fonctions cellulaires.RalA est impliquĂ© en prolifĂ©ration en absence de substrat et l'exocytose polarisĂ©e.RalB est impliquĂ© dans la migration cellulaire, l'autophagie et l'apoptose des cellules cancĂ©reuses. Comment les GTPases Ral rĂ©gulent ces diffĂ©rents fonctions n’est toujours pas connu.Une partie de ma thĂšse Ă©tait consacrĂ©e Ă  l'Ă©tude de la spĂ©cificitĂ© des fonctions de RalA et RalB, ainsi que la spĂ©cificitĂ© des RalGEFs et des Ă©lĂ©ments de l'interactome deRal, dans trois processus biologiques: la cytocinĂšse, la migration cellulaire et l'activation de la voie MAPK.Nous avons dĂ©montrĂ© que RalA et RalB ont des fonctions distinctes pendant la cytocinĂšse. RalA est nĂ©cessaire pour la correcte progression de la cytocinĂšse alors RalB est nĂ©cessaire pour l’abscission du pont intracellulaire. Nous avons montrĂ© Ă©galement que RalA, mais pas RalB, rĂ©gule l’activation de p38 et de Jnk Ă  travers le complexe exocyste en rĂ©ponse au stress osmotique. L'implication de RalB, mais pas RalA, dans la migration cellulaire a Ă©tĂ© Ă©tablie antĂ©rieurement. Dans ces trois fonctions, nous avons montrĂ© que les GTPases Ral sont Ă©tĂ© rĂ©gulĂ©es par des RalGEFs spĂ©cifiques.Nous avons effectuĂ© un crible par siARN de 91 gĂšnes codant des protĂ©ines du rĂ©seau d’interactions protĂ©ine‐protĂ©ine autour de Ral (l'interactome de Ral), nous avons identifiĂ© 14 protĂ©ines impliquĂ©es dans la voie de RalA et 8 protĂ©ines impliquĂ©es dans la voie de RalB, en cytocinĂšse. Dans la migration cellulaire, nous avons identifiĂ© 22 protĂ©ines impliquĂ©es dans la voie de RalB. Nous avons identifiĂ© cinq protĂ©ines communes aux deux fonctions cellulaires.Parmi ces protĂ©ines, j'ai Ă©tudiĂ© la relation fonctionnelle entre RalA et Stk38, une kinase qui appartient Ă  la voie Hippo, qui a un rĂŽle suppresseur de tumeur. J'ai montrĂ© que RalA active Stk38 par une voie RalA/exocyste/Map4k4 en rĂ©ponse au stress osmotique. J’ai dĂ©montrĂ© que cette voie est impliquĂ©e dans l’activation de la voie p38 et Jnk en rĂ©ponse au stress osmotique. J'ai aussi montrĂ© que la rĂ©gulation deStk38 par RalA est nĂ©cessaire pour l'apoptose induite par le TNFα.L'identification de nouveaux composants de la voie RalA ouvre de nouvelles perspectives dans la comprĂ©hension de la fonction des GTPases Ral dans les processus normaux et tumoraux. En outre, ce travail est le premier prĂ©sentant RalA comme une protĂ©ine pro‐apoptotique, ce qui suggĂšre que RalA pourrait possĂ©der une fonction suppresseur de tumeurs.The Ras‐like GTPases RalA and RalB are proximal effectors of oncogenic Ras.Despite their high homology, their common activators (the RalGEFs) and effectors(the exocyst complex), they make distinct and sometimes collaborative contributions to diverse cellular functions. RalA supports anchorage independent growth and regulates polarized exocytosis. RalB regulates cell migration and autophagy and inhibits apoptosis of cancer cells. How Ral GTPases achieve their differing functions is still elusive.One part of my thesis was dedicated to study the specificity of RalA and RalB functions, as well as the specificity of RalGEFs functions and of the components of the Ral interactome, in three biological processes: cytokinesis, cell migration and MAPK activation.We demonstrated that RalA and RalB have distinct functions during cytokinesis.RalA is necessary for correct progression of cytokinesis whereas RalB is necessary for abscission of the intracellular bridge. We showed also that RalA, but not RalB,regulates p38 and Jnk activation upon osmotic stress through the exocyst complex.The importance of RalB, but not RalA, in cell migration was established previously. In these three functions, we showed that the functions of Ral GTPases were triggered by specific RalGEFs.We carried out a siRNA screen of 91 genes encoding proteins participating to a protein‐protein interaction map rooted in Ral (the Ral interactome), we determined14 proteins as components of RalA pathway and 8 proteins as components of RalBpathway, required for cytokinesis completion. In cell migration, we determined 22 proteins as components of RalB pathway. We identified 5 proteins in common involved in both cellular functions.Among these proteins I have been studying the functional relationship betweenRalA and Stk38, a kinase that belongs to the tumour suppressor Hippo pathway. I showed that upon osmotic stress, RalA activates Stk38 by phosphorylation through aRalA/exocyst/Map4k4 pathway. I demonstrate that this pathway has the function to trigger p38 and Jnk activation upon osmotic stress. I showed that the regulation ofStk38 by RalA is required for apoptosis induced by TNFα.The identification of new components of Ral pathway opened new perspectives in understanding the Ral GTPases function in normal and tumour processes. Moreover,this is the first work presenting RalA as a pro‐apoptotic protein, suggesting that RalAmight have tumour‐suppressor like functions

    On the Expansion of “Dangerous” Gene Repertoires by Whole-Genome Duplications in Early Vertebrates

    Get PDF
    The emergence and evolutionary expansion of gene families implicated in cancers and other severe genetic diseases is an evolutionary oddity from a natural selection perspective. Here, we show that gene families prone to deleterious mutations in the human genome have been preferentially expanded by the retention of “ohnolog” genes from two rounds of whole-genome duplication (WGD) dating back from the onset of jawed vertebrates. We further demonstrate that the retention of many ohnologs suspected to be dosage balanced is in fact indirectly mediated by their susceptibility to deleterious mutations. This enhanced retention of “dangerous” ohnologs, defined as prone to autosomal-dominant deleterious mutations, is shown to be a consequence of WGD-induced speciation and the ensuing purifying selection in post-WGD species. These findings highlight the importance of WGD-induced nonadaptive selection for the emergence of vertebrate complexity, while rationalizing, from an evolutionary perspective, the expansion of gene families frequently implicated in genetic disorders and cancers

    Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs

    No full text
    The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression
    corecore