19 research outputs found

    Connotation Frames: A Data-Driven Investigation

    Full text link
    Through a particular choice of a predicate (e.g., "x violated y"), a writer can subtly connote a range of implied sentiments and presupposed facts about the entities x and y: (1) writer's perspective: projecting x as an "antagonist"and y as a "victim", (2) entities' perspective: y probably dislikes x, (3) effect: something bad happened to y, (4) value: y is something valuable, and (5) mental state: y is distressed by the event. We introduce connotation frames as a representation formalism to organize these rich dimensions of connotation using typed relations. First, we investigate the feasibility of obtaining connotative labels through crowdsourcing experiments. We then present models for predicting the connotation frames of verb predicates based on their distributional word representations and the interplay between different types of connotative relations. Empirical results confirm that connotation frames can be induced from various data sources that reflect how people use language and give rise to the connotative meanings. We conclude with analytical results that show the potential use of connotation frames for analyzing subtle biases in online news media.Comment: 11 pages, published in Proceedings of ACL 201

    Investigating Content Planning for Navigating Trade-offs in Knowledge-Grounded Dialogue

    Full text link
    Knowledge-grounded dialogue generation is a challenging task because it requires satisfying two fundamental yet often competing constraints: being responsive in a manner that is specific to what the conversation partner has said while also being attributable to an underlying source document. In this work, we bring this trade-off between these two objectives (specificity and attribution) to light and ask the question: Can explicit content planning before the response generation help the model to address this challenge? To answer this question, we design a framework called PLEDGE, which allows us to experiment with various plan variables explored in prior work, supporting both metric-agnostic and metric-aware approaches. While content planning shows promise, our results on whether it can actually help to navigate this trade-off are mixed -- planning mechanisms that are metric-aware (use automatic metrics during training) are better at automatic evaluations but underperform in human judgment compared to metric-agnostic mechanisms. We discuss how this may be caused by over-fitting to automatic metrics and the need for future work to better calibrate these metrics towards human judgment. We hope the observations from our analysis will inform future work that aims to apply content planning in this context.Comment: Accepted at EACL 2024 Main Conference (Long

    ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning

    Full text link
    We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.Comment: AAAI 2019 C

    CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement Learning

    Full text link
    Compared to standard retrieval tasks, passage retrieval for conversational question answering (CQA) poses new challenges in understanding the current user question, as each question needs to be interpreted within the dialogue context. Moreover, it can be expensive to re-train well-established retrievers such as search engines that are originally developed for non-conversational queries. To facilitate their use, we develop a query rewriting model CONQRR that rewrites a conversational question in the context into a standalone question. It is trained with a novel reward function to directly optimize towards retrieval using reinforcement learning and can be adapted to any off-the-shelf retriever. We show that CONQRR achieves state-of-the-art results on a recent open-domain CQA dataset containing conversations from three different sources, and is effective for two different off-the-shelf retrievers. Our extensive analysis also shows the robustness of CONQRR to out-of-domain dialogues as well as to zero query rewriting supervision
    corecore