4 research outputs found

    Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?

    Get PDF
    Previously, it has been shown that Electrical Resistance Tomography (ERT) can be used for monitoring moisture flow in undamaged cement-based materials. In this work, we investigate whether ERT could be used for imaging three-dimensional (3D) unsaturated moisture flow in cement-based materials that contain discrete cracks. Novel computational methods based on the so-called absolute imaging framework are developed and used in ERT image reconstructions, aiming at a better tolerance of the reconstructed images with respect to the complexity of the conductivity distribution in cracked material. ERT is first tested using specimens with physically simulated cracks of known geometries, and corroborated with numerical simulations of unsaturated moisture flow. Next, specimens with loading-induced cracks are imaged; here, ERT reconstructions are evaluated qualitatively based on visual observations and known properties of unsaturated moisture flow. Results indicate that ERT is a viable method of visualizing 3D unsaturated moisture flow in cement-based materials with discrete cracks

    Invisibility and indistinguishability in structural damage tomography

    Get PDF
    Structural damage tomography (SDT) uses full-field or distributed measurements collected from sensors or self-sensing materials to reconstruct quantitative images of potential damage in structures, such as civil structures, automobiles, aircraft, etc. In approximately the past ten years, SDT has increased in popularity due to significant gains in computing power, improvements in sensor quality, and increases in measurement device sensitivity. Nonetheless, from a mathematical standpoint, SDT remains challenging because the reconstruction problems are usually nonlinear and ill-posed. Inasmuch, the ability to reliably reconstruct or detect damage using SDT is seldom guaranteed due to factors such as noise, modeling errors, low sensor quality, and more. As such, damage processes may be rendered invisible due to data indistinguishability. In this paper we identify and address key physical, mathematical, and practical factors that may result in invisible structural damage. Demonstrations of damage invisibility and data indistinguishability in SDT are provided using experimental data generated from a damaged reinforced concrete beam
    corecore