4 research outputs found

    Design, Development and In-vitro Evaluation of Pinaverium Colon Targeted Tablets

    Full text link
    In the present research work colon formulation of Pinaverium targeted to colon by using various polymers developed. To achieve pH-independent drug release of Pinaverium, pH modifying agents (buffering agents) were used. Colon targeted tablets were preparedin two steps. Initially core tablets were prepared and then the tablets were coated by using different pH dependent polymers. Ethyl cellulose, Eudragit RLPO and S100 were used as enteric coating polymers. The precompression blend of all formulations was subjected to various flow property tests and all the formulations were passed the tests. The tablets were coated by using polymers and the coated tablets were subjected to various evaluation techniques. The tablets were passed all the tests. Among all the formulations F6 formulation was found to be optimized as it was retarded the drug release up to 18 hours and showed maximum of 98.45% drug release. It followed first order kinetics mechanism

    Formulation and In-vitro Characterization of Erythromycin Ocular Inserts

    Full text link
    Erythromycin has antibacterial activity and especially useful in the treatment of superficial infections involving conjunctivitis and/or cornea caused by organisms. Sustained drug therapies have more advantages than conventional. In the present study, an attempt was made to formulate sustained drug delivery system for Erythromycin in matrix type the formulations for Erythromycin containing 10%, 12%, and 14% w/v of Gelatin & Hydroxy propyl methylcellulose, and 14% , 16%, and 18% w/v for Ethyl cellulose were prepared by solvent casting method and evaluated for their average weight variation, thickness, drug content, in-vitro drug release and stability studies. An increase in average weight and thickness is due to an increase in polymer concentration. IR spectral studies were performed to confirm the interaction of drug with excipients. IR spectrum revealed that there is no incompatibility and no drug-polymer interactions. In vitro drug release studies were performed by vial method. Gelatin F09, HPMC F15 and EC F21 exhibited maximum average weight 16.66 ± 0.02, 10.81 ± 0.01 & 21.40 ± 0.01 mg respectively and thickness of 0.29 ± 0.01, 0.33± 0.06 and 0.43± 0.02mm respectively. The drug content was found to be 94.48, 92.87 & 90.26% respectively. The in-vitro drug release studies showed that increase in polymer content decreases the drug release from ocular inserts. Formulations containing 16 % and 18% w/v of EC showed sustained and almost complete drug release and dissolved 86.99% and 85.00 % over 14hours period was selected as an ideal formulation. The dissolution data of above formulation were subjected to first order, Higuchi's and peppa's equations. The linearity and slope indicates that the release of erythromycin from the films might have followed Peppa's double log plot and non Fickian characteristics. Drug release from the ocular insert by diffusion controlled mechanism. Stability studies conducted for F20 formulation. The formulation showed satisfactory physical stability at 25oC and 40oC at 60% and 75% RH respectively. The physical appearance had not changed considerably. It can be concluded that formulation containing EC 18 % w/v has achieved the objectives of increased contact time, prolonged release, decreased frequency of administration and thus may improve the patient compliance
    corecore