8 research outputs found

    NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma

    Get PDF
    : Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFβ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation

    The molecular effects of Asperuloside against thermogenesis and anti-inflammatory process through multiple recent obesity pathways: An anti-obesity drug discovery by in-silico analysis

    No full text
    Objectives: Adenosine receptor signaling and suppressing potential pathways such as the aryl hydrocarbon receptor (AHR) and takeda G-protein-coupled receptor-5(TGR5) have been identified as potential targets for enhancing metabolic health. Certain adenosine receptor (AR) ligands have been suggested to reduce inflammation and improve thermogenesis in adipose tissue. Methods: This study employed in-silico biomolecular fractions of adenosine receptors and other potential targets to understand the mechanism of action of Asperuloside. Additionally, the anti-obesity potential of Asperuloside, a dual-acting ligand with A2A adenosine receptor (A2AAR) agonist and A3 adenosine receptor (A3AR) agonist activities, were examined using computational analysis in the obesity model. The impact of Asperuloside on inflammation and thermogenesis was studied through diverse protein structures such as the A2AAR complex with agonist/A2AAR complex with antagonist, the rhodopsin mutant with bound galphact peptide (as A3 adenosine receptor), The Human TGR5 complex with synthetic agonist 23H, and AHR receptors antagonism. Results: The study found that Asperuloside has therapeutic affinity for the binding site of adenosine receptors and revealed a novel binding interaction that helps reduce inflammation and improve thermogenesis-mediated obesity. Conclusion: Asperuloside may have anti-obesity effects through its dual-acting ligand with A2AAR and A3AR agonist activities. This study provides a major step towards understanding the mechanism of action of Asperuloside and its potential use as an anti-obesity drug. In vivo tests will help ascertain its pharmacokinetic characteristics, metabolite production in animals, and the effects of chronic daily absorption

    Myco-decontamination of azo dyes: nano-augmentation technologies

    No full text

    Notes

    No full text
    corecore