4 research outputs found

    The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine

    No full text
    With growing concern over greenhouse gases there is increasing emphasis on reducing CO<sub>2</sub> emissions. Despite engine efficiency improvements plus increased dieselization of the fleet, increasing vehicle numbers results in increasing CO<sub>2</sub> emissions. To reserve this trend the fuel source must be changed to renewable fuels which are CO<sub>2</sub> neutral. As a renewable, sustainable and alternative fuel for compression ignition engines, biodiesel is widely accepted as comparable fuel to diesel in diesel engines. This is due to several factors like decreasing the dependence on imported petroleum, reducing global warming, increasing lubricity, and reducing substantially the exhaust emissions from diesel engine. However, there is a major disadvantage in the use of biodiesel as it has lower heating value, higher density and higher viscosity, higher fuel consumption and higher NO<sub>x</sub> emission, which limits its application. Here fuel additives become essential and indispensable tools not only to minimize these drawbacks but also generate specified products to meet the regional and international standards. Fuel additives can contribute towards fuel economy and emission reduction either directly or indirectly. Their use enable vehicle performance to be maintained at, or near, optimum over the lifetime of the vehicle. A variety of additives are used in automotive biodiesel fuel to meet specification limits and to enhance quality. For example, metal based additives, oxygenated additives, antioxidants, cetane number improvers, lubricity improvers and cold flow improvers are used to meet specifications and quality. This article is a literature review of the effect of various additives on biodiesel properties, engine performance and exhaust emission characteristics and the corresponding effect factors were surveyed and analyzed in detail. The review concludes that the use of additive in biodiesel fuel is inalienable both for improving properties and for better engine performance and emission control. Therefore, in order to find the appropriate fuel additives in the combustion applications, more experiments are needed to explore the different related mechanisms

    Effect of antioxidant on the oxidation stability and combustion-performance-emission characteristics of a diesel engine fueled with diesel-biodiesel blend

    No full text
    Alexandrian laurel or Calophyllum inophyllum oil is recently considered one of the most anticipated nonconsumable or nonedible biodiesel sources. An attempt has been made in this study to increase the oxidation stability and investigate the engine performance, emission, and combustion characteristics of a diesel engine by adding 1% (by vol.) of two antioxidants, such as 2,6-Di-tert.-butyl-4-methylphenol and 2,2'-methylenebis (4-methyl-6-tert-butylphenol), in higher percentages of C. inophyllum biodiesel (CB30) with diesel fuel (B0). The experiment was performed on a single-cylinder, water-cooled, direct-injection diesel engine for this purpose. The addition of both antioxidants increased the oxidation stability without significantly changing other physicochemical properties. Results also show that the antioxidants enhanced the start of combustion of biodiesel, which resulted in a short ignition delay. The peak pressure and the peak heat release rate during premixed combustion phase of pure CB30 and its modified blend with antioxidant were higher than those of B0. Both antioxidant blends showed higher brake power, higher brake thermal efficiency, and lower brake specific fuel consumption than pure CB30. Both antioxidants significantly reduced NOX emission; however, CO, HC, and smoke opacity were slightly higher than those of CB30. Based on this study, Alexandrian laurel or C inophyllum biodiesel blend (CB30) with antioxidant can be used as an alternative fuel in a diesel engine without modifications. (C) 2015 Elsevier Ltd. All rights reserved
    corecore