7 research outputs found

    Passage time from four to two blocks of opinions in the voter model and walks in the quarter plane

    Get PDF
    A random walk in Z+2Z_+^2 spatially homogeneous in the interior, absorbed at the axes, starting from an arbitrary point (i0,j0)(i_0,j_0) and with step probabilities drawn on Figure 1 is considered. The trivariate generating function of probabilities that the random walk hits a given point (i,j)∈Z+2(i,j)\in Z_+^2 at a given time k≄0k\geq 0 is made explicit. Probabilities of absorption at a given time kk and at a given axis are found, and their precise asymptotic is derived as the time k→∞k\to\infty. The equivalence of two typical ways of conditioning this random walk to never reach the axes is established. The results are also applied to the analysis of the voter model with two candidates and initially, in the population ZZ, four connected blocks of same opinions. Then, a citizen changes his mind at a rate proportional to the number of its neighbors that disagree with him. Namely, the passage from four to two blocks of opinions is studied.Comment: 11 pages, 1 figur

    On the functions counting walks with small steps in the quarter plane

    Get PDF
    Models of spatially homogeneous walks in the quarter plane Z+2{\bf Z}_+^{2} with steps taken from a subset S\mathcal{S} of the set of jumps to the eight nearest neighbors are considered. The generating function (x,y,z)↩Q(x,y;z)(x,y,z)\mapsto Q(x,y;z) of the numbers q(i,j;n)q(i,j;n) of such walks starting at the origin and ending at (i,j)∈Z+2(i,j) \in {\bf Z}_+^{2} after nn steps is studied. For all non-singular models of walks, the functions x↩Q(x,0;z)x \mapsto Q(x,0;z) and y↩Q(0,y;z)y\mapsto Q(0,y;z) are continued as multi-valued functions on C{\bf C} having infinitely many meromorphic branches, of which the set of poles is identified. The nature of these functions is derived from this result: namely, for all the 51 walks which admit a certain infinite group of birational transformations of C2{\bf C}^2, the interval ]0,1/∣S∣[]0,1/|\mathcal{S}|[ of variation of zz splits into two dense subsets such that the functions x↩Q(x,0;z)x \mapsto Q(x,0;z) and y↩Q(0,y;z)y\mapsto Q(0,y;z) are shown to be holonomic for any zz from the one of them and non-holonomic for any zz from the other. This entails the non-holonomy of (x,y,z)↩Q(x,y;z)(x,y,z)\mapsto Q(x,y;z), and therefore proves a conjecture of Bousquet-M\'elou and Mishna.Comment: 40 pages, 17 figure

    A HUMAN PROOF OF GESSEL’S LATTICE PATH CONJECTURE (PRELIMINARY VERSION)

    No full text
    Abstract. Gessel walks are planar walks confined to the positive quarter plane, that move by unit steps in any of the following directions: West, North-East, East and South-West. In 2001, Ira Gessel conjectured a closed-form expression for the number of Gessel walks of a given length starting and ending at the origin. In 2008, Kauers, Koutschan and Zeilberger gave a computer-aided proof of this conjecture. The same year, Bostan and Kauers showed, using again computer algebra tools, that the trivariate generating function of Gessel walks is algebraic. In this article we propose the first “human proofs ” of these results. They are derived from a new expression for the generating function of Gessel walks. hal-00858083, version 1- 4 Sep 2013 1

    A human proof of Gessel’s lattice path conjecture

    No full text

    ON THE NATURE OF THE GENERATING SERIES OF WALKS IN THE QUARTER PLANE

    No full text
    International audienceIn the present paper, we introduce a new approach, relying on the Galois theory of difference equations, to study the nature of the generating series of walks in the quarter plane. Using this approach, we are not only able to recover many of the recent results about these series, but also to go beyond them. For instance, we give for the first time hypertranscendency results, i.e., we prove that certain of these generating series do not satisfy any nontrivial nonlinear algebraic differential equation with rational coefficients

    The Single-Stranded DNA Phages

    No full text
    corecore