3 research outputs found

    Sources to Seafood: Mercury Pollution in the Marine Environment

    Get PDF
    In 2010, the Toxic Metals Superfund Research Program at Dartmouth College brought together a group of 50 scientists and policy stakeholders to form C-MERC, the Coastal and Marine Mercury Ecosystem Research Collaborative. The goal was to review current knowledge—and knowledge gaps—relating to a global environmental health problem, mercury contamination of the world’s marine fish. C-MERC participants attended two workshops over a two-year period, and in 2012 C-MERC authors published a series of peer-reviewed papers in the journals Environmental Health Perspectives and Environmental Research that elucidated key processes related to the inputs, cycling, and uptake of mercury in marine ecosystems, effects on human health, and policy implications. This report synthesizes the knowledge from these papers in an effort to summarize the science relevant to policies being considered at regional, national, and global levels. The Dartmouth Toxic Metals Superfund Research Program uses an interdisciplinary approach to investigate the ways that arsenic and mercury in the environment affect ecosystems and human health. Arsenic and mercury are commonly found in Superfund sites around the U.S. as well as other areas that result in exposures to certain communities. The Research Translation Core of the program communicates program science to government partners, non-governmental organizations, health care providers and associations, universities and the lay community, and facilitates the use of its research for the protection of public health. The Research Translation Core organized the C-MERC effort. The Superfund Research Program of the National Institute of Environmental Health Sciences supports a network of university programs that investigate the complex health and environmental issues associated with contaminants found at the nation’s hazardous waste sites. The Program coordinates with the Environmental Protection Agency and the Agency for Toxic Substances and Disease Registry of the Centers for Disease Control and Prevention, federal entities charged with management of environmental and human health hazards associated with toxic substances

    Opportunities and Challenges for Dietary Arsenic Intervention

    No full text
    The diet is emerging as the dominant source of arsenic exposure for most of the U.S. population. Despite this, limited regulatory efforts have been aimed at mitigating exposure, and the role of diet in arsenic exposure and disease processes remains understudied. In this brief, we discuss the evidence linking dietary arsenic intake to human disease and discuss challenges associated with exposure characterization and efforts to quantify risks. In light of these challenges, and in recognition of the potential longer-term process of establishing regulation, we introduce a framework for shorter-term interventions that employs a field-to-plate food supply chain model to identify monitoring, intervention, and communication opportunities as part of a multisector, multiagency, science-informed, public health systems approach to mitigation of dietary arsenic exposure. Such an approach is dependent on coordination across commodity producers, the food industry, nongovernmental organizations, health professionals, researchers, and the regulatory community.Dartmouth College Toxic Metals Superfund Research Program from National Institute of Environmental Health Sciences (NIEHS) of the National Institutes of Health (NIH) [1R13ES026493-01, P42ES007373]; Children's Environmental Health and Disease Prevention Research Center at Dartmouth from NIEHS of the NIH [P01ES022832]; U.S. Environmental Protection Agency [RD-83544201]Open access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore