19 research outputs found

    Twenty-Five Years of Landsat Thermal Band Calibration

    Get PDF
    Landsat-7 Enhanced Thematic Mapper+ (ETM+), launched in April 1999, and Landsat-5 Thematic Mapper (TM), launched in 1984, both have a single thermal band. Both instruments thermal band calibrations have been updated previously: ETM+ in 2001 for a pre-launch calibration error and TM in 2007 for data acquired since the current era of vicarious calibration has been in place (1999). Vicarious calibration teams at Rochester Institute of Technology (RIT) and NASA/Jet Propulsion Laboratory (JPL) have been working to validate the instrument calibration since 1999. Recent developments in their techniques and sites have expanded the temperature and temporal range of the validation. The new data indicate that the calibration of both instruments had errors: the ETM+ calibration contained a gain error of 5.8% since launch; the TM calibration contained a gain error of 5% and an additional offset error between 1997 and 1999. Both instruments required adjustments in their thermal calibration coefficients in order to correct for the errors. The new coefficients were calculated and added to the Landsat operational processing system in early 2010. With the corrections, both instruments are calibrated to within +/-0.7K

    Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration

    Get PDF
    Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq msrmicrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq msrmicrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed the statistical assessment but indicate that the correction (particularly in band 11) is probably only valid for a subset of data. While the stray light effect is small enough in Band 10 to make the data useful across a wide array of applications, the effect in Band 11 is larger and the vicarious results suggest that Band 11 data should not be used where absolute calibration is required

    Thermal Infrared Radiometric Calibration of the Entire Landsat 4, 5, and 7 Archive (1982-2010)

    Get PDF
    Landsat's continuing record of the thermal state of the earth's surface represents the only long term (1982 to the present) global record with spatial scales appropriate for human scale studies (i.e., tens of meters). Temperature drives many of the physical and biological processes that impact the global and local environment. As our knowledge of, and interest in, the role of temperature on these processes have grown, the value of Landsat data to monitor trends and process has also grown. The value of the Landsat thermal data archive will continue to grow as we develop more effective ways to study the long term processes and trends affecting the planet. However, in order to take proper advantage of the thermal data, we need to be able to convert the data to surface temperatures. A critical step in this process is to have the entire archive completely and consistently calibrated into absolute radiance so that it can be atmospherically compensated to surface leaving radiance and then to surface radiometric temperature. This paper addresses the methods and procedures that have been used to perform the radiometric calibration of the earliest sizable thermal data set in the archive (Landsat 4 data). The completion of this effort along with the updated calibration of the earlier (1985 1999) Landsat 5 data, also reported here, concludes a comprehensive calibration of the Landsat thermal archive of data from 1982 to the presen

    Landsat TM and ETM+ Thermal Band Calibration

    No full text
    Landsat-5 Thematic Mapper (TM) has been imaging the Earth since March 1984 and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) was added to the series of Landsat instruments in April 1999. The stability and calibration of the ETM+ has been monitored extensively since launch. Though not monitored for many years, TM now has a similar system in place to monitor stability and calibration. University teams have been evaluating the on-board calibration of the instruments through ground-based measurements since 1999. This paper considers the calibration efforts for the thermal band, Band 6, of both the Landsat-5 and Landsat-7 instruments

    Landsat-5 Thematic Mapper Thermal Band Calibration Update

    No full text
    corecore