15 research outputs found

    Stress-Induced Sphingolipid Signaling: Role of Type-2 Neutral Sphingomyelinase in Murine Cell Apoptosis and Proliferation

    Get PDF
    International audienceBACKGROUND: Sphingomyelin hydrolysis in response to stress-inducing agents, and subsequent ceramide generation, are implicated in various cellular responses, including apoptosis, inflammation and proliferation, depending on the nature of the different acidic or neutral sphingomyelinases. This study was carried out to investigate whether the neutral Mg(2+)-dependent neutral sphingomyelinase-2 (nSMase2) plays a role in the cellular signaling evoked by TNFalpha and oxidized LDLs, two stress-inducing agents, which are mitogenic at low concentrations and proapoptotic at higher concentrations. METHODOLOGY AND PRINCIPAL FINDINGS: For this purpose, we used nSMase2-deficient cells from homozygous fro/fro (fragilitas ossium) mice and nSMase2-deficient cells reconstituted with a V5-tagged nSMase2. We report that the genetic defect of nSMase2 (in fibroblasts from fro/fro mice) does not alter the TNFalpha and oxidized LDLs-mediated apoptotic response. Likewise, the hepatic toxicity of TNFalpha is similar in wild type and fro mice, thus is independent of nSMase2 activation. In contrast, the mitogenic response elicited by low concentrations of TNFalpha and oxidized LDLs (but not fetal calf serum) requires nSMase2 activation. CONCLUSION AND SIGNIFICANCE: nSMase2 activation is not involved in apoptosis mediated by TNFalpha and oxidized LDLs in murine fibroblasts, and in the hepatotoxicity of TNFalpha in mice, but is required for the mitogenic response to stress-inducing agents

    Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics

    Full text link
    The Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for the time evolution of the order parameter in systems undergoing first-order phase transformations has been extended by Sekimoto to the level of two-point correlation functions. Here, this extended KJMA theory is applied to a kinetic Ising lattice-gas model, in which the elementary kinetic processes act on microscopic length and time scales. The theoretical framework is used to analyze data from extensive Monte Carlo simulations. The theory is inherently a mesoscopic continuum picture, and in principle it requires a large separation between the microscopic scales and the mesoscopic scales characteristic of the evolving two-phase structure. Nevertheless, we find excellent quantitative agreement with the simulations in a large parameter regime, extending remarkably far towards strong fields (large supersaturations) and correspondingly small nucleation barriers. The original KJMA theory permits direct measurement of the order parameter in the metastable phase, and using the extension to correlation functions one can also perform separate measurements of the nucleation rate and the average velocity of the convoluted interface between the metastable and stable phase regions. The values obtained for all three quantities are verified by other theoretical and computational methods. As these quantities are often difficult to measure directly during a process of phase transformation, data analysis using the extended KJMA theory may provide a useful experimental alternative.Comment: RevTex, 21 pages including 14 ps figures. Submitted to Phys. Rev. B. One misprint corrected in Eq.(C1

    Tissue Eng Regen Med

    No full text
    Background:Cocultures of human gingival fibrobasts (hGF) and endothelial cells could enhance regeneration and repair models as well as improve vascularization limitations in tissue engineering. The aim of this study was to assess if hGF could support formation of stable vessel-like networks. Methods:Explant primary hGF were isolated from gum surgical wastes collected from healthy patients with no history of periodontitis. Human umbilical vein endothelial cells (HUVEC) were two-dimensional (2D) and three-dimensional (3D) cocultured in vitro with hGF at a cell ratio of 1:1 and medium of 1:1 of their respective media during at least 31 days. Vessel quantification of HUVEC networks was performed. In order to investigate the pericyte-like properties of hGF, the expression of perivascular markers α-SMA, NG2, CD146 and PDGFR-β was studied using immunocytochemistry and flow cytometry on 2D cultures. Results:hGF were able to support a long-lasting HUVEC network at least 31 days, even in the absence of a bioreactor with flow. As observed, HUVEC started to communicate with each other from day 7, constructing a network. Their interconnection increased significantly between day 2 and day 21 and lasted beyond the 31 days of observation. Moreover, we tried to explain the stability of the networks obtained and showed that a small population of hGF in close vicinity of HUVEC networks expressed perivascular markers. Conclusion:These findings highlight a new interesting property concerning hGF, accentuating their relevance in tissue engineering and periodontal regeneration. These promising results need to be confirmed using more 3D applications and in vivo testing

    Étude de faisabilité d’un greffon biofabriqué pour traiter des récessions parodontales

    No full text
    Introduction : L’ingénierie tissulaire permet d’envisager de nouvelles thérapeutiques pour le traitement des récessions gingivales. Cette étude de faisabilité proposait un protocole et une chronologie pour la biofabrication de greffons parodontaux sur mesure palliant ces défauts. Technique : L’impression d’une matrice en hydrogel collagénique a été réalisée grâce à un système d’éjection piézoélectrique Microdrop®. La mise au point des conditions optimales d’impression a été déterminée en fabriquant des échantillons de dimension et de morphologie compatibles avec une application clinique. L’ensemencement cellulaire de matrices a été réalisé par bioimpression assistée par laser, et la viabilité cellulaire post-impression testée. L’impression d’une matrice a été directement réalisée sur les membranes de collagène préfabriquées pour évaluer la facilité de manipulation du greffon. Les matrices obtenues ont la forme souhaitée, les cellules sont viables, et le greffon est aisément manipulable et suturable. Commentaires : L’impression de la matrice permet de choisir l’épaisseur du greffon. Il est attendu in vivo que l’organisation spatiale des fibroblastes au sein des greffons permette d’augmenter la résistance mécanique et l’esthétique des greffes parodontales. Conclusion : Cette étude de faisabilité préliminaire a permis de poser le concept. D’autres études seront nécessaires pour étudier le remodelage du greffon in vitro et in vivo

    A Bibliometric Study to Assess Bioprinting Evolution

    No full text
    Bioprinting as a tissue engineering tool is one of the most promising technologies for overcoming organ shortage. However, the spread of populist articles among on this technology could potentially lead public opinion to idealize its readiness. This bibliometric study aimed to trace the evolution of bioprinting literature over the past decade (i.e., 2000 to 2015) using the SCI-expanded database of Web of Science® (WoS, Thomson Reuters). The articles were analyzed by combining various bibliometric tools, such as science mapping and topic analysis, and a Technology Readiness Scale was adapted to assess the evolution of this emerging field. The number of analyzed publications was low (231), but the literature grew exceptionally fast. The “Engineering, Biomedical” was still the most represented WoS category. Some of the recent fronts were “hydrogels” and “stem cells”, while “in vitro” remained one of the most used keywords. The number of countries and journals involved in bioprinting literature grew substantially in one decade, also supporting the idea of an increasing community. Neither the United States’ leadership in bioprinting productivity nor the role of universities in publications were challenged. “Biofabrication” and “Biomaterials” journals were still the leaders of the bioprinting field. Bioprinting is a young but promising technology

    Biofabrication

    No full text
    Grafts aside, current strategies employed to overcome bone loss still fail to reproduce native tissue physiology. Among the emerging bioprinting strategies, laser-assisted bioprinting (LAB) offers very high resolution, allowing designing micrometric patterns in a contactless manner, providing a reproducible tool to test ink formulation. To this date, no LAB associated ink succeeded to provide a reproducible ad integrum bone regeneration on a murine calvaria critical size defect model. Using the Conformité Européenne (CE) approved BioRoot RCS® as a mineral addition to a collagen-enriched ink compatible with LAB, the present study describes the process of the development of a solidifying tricalcium silicate-based ink as a new bone repair promoting substrates in a LAB model. This ink formulation was mechanically characterized by rheology to adjust it for LAB. Printed aside stromal cells from apical papilla (SCAPs), this ink demonstrated a great cytocompatibility, with significant in vitro positive impact upon cell motility, and an early osteogenic differentiation response in the absence of another stimulus. Results indicated that the in vivo application of this new ink formulation to regenerate critical size bone defect tends to promote the formation of bone volume fraction without affecting the vascularization of the neo-formed tissue. The use of LAB techniques with this ink failed to demonstrate a complete bone repair, whether SCAPs were printed or not of at its direct proximity. The relevance of the properties of this specific ink formulation would therefore rely on the quantity applied in situ as a defect filler rather than its cell modulation properties observed in vitro. For the first time, a tricalcium silicate-based printed ink, based on rheological analysis, was characterized in vitro and in vivo, giving valuable information to reach complete bone regeneration through formulation updates. This LAB-based process could be generalized to normalize the characterization of candidate ink for bone regeneration

    Ruminococcus albus 8 Mutants Defective in Cellulose Degradation Are Deficient in Two Processive Endocellulases, Cel48A and Cel9B, Both of Which Possess a Novel Modular Architecture

    No full text
    The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B(2) (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria

    Description of a multidisciplinary model of care in a French cohort of adult patients with tuberous sclerosis complex

    No full text
    BackgroundTuberous sclerosis complex (TSC) is a rare autosomal dominant genetic disorder. Due to the various manifestations of TSC and their potential complications, a multidisciplinary care approach is recommended by consensus guidelines.ObjectivesOur study aimed to give a complete description of our TSC adult cohort and to evaluate the multidisciplinary and interdisciplinary management model.MethodsData on each adult patient diagnosed with TSC, including disease manifestations, interventions and outcomes, were collected at baseline and updated annually. A multidisciplinary TSC approach with all the recommended explorations was carried out annually.Results90 patients were enrolled in Centre Hospitalier Universitaire de Bordeaux, between January 2000 and September 2018. Median age of patients at inclusion was 37 years (range, 27–47) and 20 years old at diagnosis of TSC. Regarding the occurrence of TSC manifestations, 97% of the patients had cutaneous lesions, 89% had neurological manifestations, 83% had renal manifestations and 100% had dental lesions with pits. More than half the patients had sclerotic bone lesions (68%), TSC-associated neuropsychiatric disorders (64%) and lymphangioleiomyomatosis (59%). A TSC multidisciplinary approach was developed including a global follow-up and an evaluation of TSC targeting organs, according to the recommendations. A satisfaction survey revealed global and entire satisfaction of patients with TSC.ConclusionWe obtained an accurate description of a cohort of adult patients with TSC. Our multidisciplinary approach model allowed us to provide optimal management of patients with TSC with a high level of patient satisfaction
    corecore