1,084 research outputs found

    Stratified horizontal flow in vertically vibrated granular layers

    Full text link
    A layer of granular material on a vertically vibrating sawtooth-shaped base exhibits horizontal flow whose speed and direction depend on the parameters specifying the system in a complex manner. Discrete-particle simulations reveal that the induced flow rate varies with height within the granular layer and oppositely directed flows can occur at different levels. The behavior of the overall flow is readily understood once this novel feature is taken into account.Comment: 4 pages, 6 figures, submitte

    Class of dilute granular Couette flows with uniform heat flux

    Full text link
    In a recent paper [F. Vega Reyes et al., Phys. Rev. Lett. 104, 028001 (2010)] we presented a preliminary description of a special class of steady Couette flows in dilute granular gases. In all flows of this class the viscous heating is exactly balanced by inelastic cooling. This yields a uniform heat flux and a linear relationship between the local temperature and flow velocity. The class (referred to as the LTu class) includes the Fourier flow of ordinary gases and the simple shear flow of granular gases as special cases. In the present paper we provide further support for this class of Couette flows by following four different routes, two of them being theoretical (Grad's moment method of the Boltzmann equation and exact solution of a kinetic model) and the other two being computational (molecular dynamics and Monte Carlo simulations of the Boltzmann equation). Comparison between theory and simulations shows a very good agreement for the non-Newtonian rheological properties, even for quite strong inelasticity, and a good agreement for the heat flux coefficients in the case of Grad's method, the agreement being only qualitative in the case of the kinetic model.Comment: 15 pages, 10 figures; v2: change of title plus some other minor change

    A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics

    Get PDF
    We propose a new sensitivity analysis methodology for complex stochastic dynamics based on the Relative Entropy Rate. The method becomes computationally feasible at the stationary regime of the process and involves the calculation of suitable observables in path space for the Relative Entropy Rate and the corresponding Fisher Information Matrix. The stationary regime is crucial for stochastic dynamics and here allows us to address the sensitivity analysis of complex systems, including examples of processes with complex landscapes that exhibit metastability, non-reversible systems from a statistical mechanics perspective, and high-dimensional, spatially distributed models. All these systems exhibit, typically non-gaussian stationary probability distributions, while in the case of high-dimensionality, histograms are impossible to construct directly. Our proposed methods bypass these challenges relying on the direct Monte Carlo simulation of rigorously derived observables for the Relative Entropy Rate and Fisher Information in path space rather than on the stationary probability distribution itself. We demonstrate the capabilities of the proposed methodology by focusing here on two classes of problems: (a) Langevin particle systems with either reversible (gradient) or non-reversible (non-gradient) forcing, highlighting the ability of the method to carry out sensitivity analysis in non-equilibrium systems; and, (b) spatially extended Kinetic Monte Carlo models, showing that the method can handle high-dimensional problems

    Implementation of START (STrAtegies for RelaTives) for dementia carers in the third sector: Widening access to evidence-based interventions

    Get PDF
    Family members remain the main care providers for the increasing numbers of people with dementia, and often become depressed or anxious. In an implementation research project, we aimed to widen access to Strategies for RelaTives (START), a clinically and cost-effective intervention for the mental health of family carers, by laying the foundations for its implementation in the third sector. We used the integrated Promoting Action on Research Implementation in Health Services (i-PARIHS) framework to guide implementation of START, a manual-based, individually-delivered, multicomponent eight-session coping strategy intervention. We interviewed a maximum variation sample of twenty-seven stakeholders from the English Alzheimer's Society (AS), about possible difficulties in management, training, and delivery of START. We trained and supervised three AS dementia support workers in different locations, to each deliver START to three family carers. Two researchers independently coded pre-intervention interviews for themes. We assessed intervention feasibility through monitoring delivery fidelity, rating audio-recordings from 1-5 (5 being high) and interviewing facilitators, family carers and AS managers about their experiences. We assessed effectiveness on family carers' mental health using the Hospital Anxiety and Depression Scale (HADS) before and after receiving START (scores 0-42). We changed START's format by reflecting carer diversity more and increasing carer stories prominence, but core content or delivery processes were unchanged. All carers received START and attended every session. The mean fidelity score was 4.2. Mean HADS-total score reduced from baseline 18.4 (standard deviation 7.4) to follow-up 15.8 (9.7). Six (67%) carers scored as clinically depressed on baseline HADS and 2 (22%) at follow-up. Facilitators and carers rated START positively. Appropriately experienced third sector workers can be trained and supervised to deliver START and it remains effective. This has the potential for widened access at scale

    A Novel Caloric Restriction-Like Mimetic Affects Longevity in Yeast by Reprogramming Core Metabolic Pathways

    Get PDF
    Glucose limitation is a simple intervention that extends yeast replicative lifespan (RLS) via the same pathway(s) thought to mediate the benefits of caloric restriction (CR) in mammals. Here we report on “C1”, a small molecule that mimics key aspects of CR. C1 was identified in a high throughput screen for drug-like molecules that reverse the RLS shortening effect of the sirtuin inhibitor and NAD+ precursor nicotinamide. C1 reduces the cellular dependence on glycolysis and the pentose phosphate pathway, even in the presence of glucose, and compensates by elevating fatty acid -oxidation to maintain acetyl-CoA levels. C1 acts either downstream of Sir2 or in an independent CR pathway. In this regard, chemical-genetic interactions indicate that C1 influences Tor2 signaling via effects on phosphoinositide pools. Key activities of C1 extend to mammals. C1 stimulates -oxidation in mammalian cells, and in mice, reduces levels of triacylglycerides and cholesterol in livers of lean and obese mice. C1 confers oxidative resistance to diamide in both yeast and mammalian cells. In conclusion, C1 induces global changes in metabolism in yeast and mammalian cells that mimic aspects of CR. Future work will be aimed at identifying the cellular target of C1

    Statistical Properties of Contact Maps

    Full text link
    A contact map is a simple representation of the structure of proteins and other chain-like macromolecules. This representation is quite amenable to numerical studies of folding. We show that the number of contact maps corresponding to the possible configurations of a polypeptide chain of N amino acids, represented by (N-1)-step self avoiding walks on a lattice, grows exponentially with N for all dimensions D>1. We carry out exact enumerations in D=2 on the square and triangular lattices for walks of up to 20 steps and investigate various statistical properties of contact maps corresponding to such walks. We also study the exact statistics of contact maps generated by walks on a ladder.Comment: Latex file, 15 pages, 12 eps figures. To appear on Phys. Rev.

    Effect of bond lifetime on the dynamics of a short-range attractive colloidal system

    Full text link
    We perform molecular dynamics simulations of short-range attractive colloid particles modeled by a narrow (3% of the hard sphere diameter) square well potential of unit depth. We compare the dynamics of systems with the same thermodynamics but different bond lifetimes, by adding to the square well potential a thin barrier at the edge of the attractive well. For permanent bonds, the relaxation time τ\tau diverges as the packing fraction ϕ\phi approaches a threshold related to percolation, while for short-lived bonds, the ϕ\phi-dependence of τ\tau is more typical of a glassy system. At intermediate bond lifetimes, the ϕ\phi-dependence of τ\tau is driven by percolation at low ϕ\phi, but then crosses over to glassy behavior at higher ϕ\phi. We also study the wavevector dependence of the percolation dynamics.Comment: Revised; 9 pages, 9 figure

    Velocity Correlations in Driven Two-Dimensional Granular Media

    Full text link
    Simulations of volumetrically forced granular media in two dimensions produce s tates with nearly homogeneous density. In these states, long-range velocity correlations with a characteristic vortex structure develop; given sufficient time, the correlations fill the entire simulated area. These velocity correlations reduce the rate and violence of collisions, so that pressure is smaller for driven inelastic particles than for undriven elastic particles in the same thermodynamic state. As the simulation box size increases, the effects of veloc ity correlations on the pressure are enhanced rather than reduced.Comment: 12 pages, 6 figures, 21 reference

    The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls

    Full text link
    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.Comment: 7 pages, 3 figure

    Sand as Maxwell's demon

    Full text link
    We consider a dilute gas of granular material inside a box, kept in a stationary state by shaking. A wall separates the box into two identical compartments, save for a small hole at some finite height hh. As the gas is cooled, a second order phase transition occurs, in which the particles preferentially occupy one side of the box. We develop a quantitative theory of this clustering phenomenon and find good agreement with numerical simulations
    corecore